extension | φ:Q→Aut N | d | ρ | Label | ID |
(C22×C4).1C23 = C23⋊D8 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 16 | | (C2^2xC4).1C2^3 | 128,327 |
(C22×C4).2C23 = C23⋊SD16 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 16 | | (C2^2xC4).2C2^3 | 128,328 |
(C22×C4).3C23 = C4⋊C4.D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).3C2^3 | 128,329 |
(C22×C4).4C23 = (C2×C4)⋊D8 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).4C2^3 | 128,330 |
(C22×C4).5C23 = (C2×C4)⋊SD16 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).5C2^3 | 128,331 |
(C22×C4).6C23 = C24.9D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 16 | | (C2^2xC4).6C2^3 | 128,332 |
(C22×C4).7C23 = C23⋊2SD16 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).7C2^3 | 128,333 |
(C22×C4).8C23 = C23⋊Q16 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).8C2^3 | 128,334 |
(C22×C4).9C23 = C4⋊C4.6D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).9C2^3 | 128,335 |
(C22×C4).10C23 = Q8⋊D4⋊C2 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).10C2^3 | 128,336 |
(C22×C4).11C23 = (C2×C4)⋊Q16 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).11C2^3 | 128,337 |
(C22×C4).12C23 = C24.12D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).12C2^3 | 128,338 |
(C22×C4).13C23 = C23.5D8 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).13C2^3 | 128,339 |
(C22×C4).14C23 = C24.14D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).14C2^3 | 128,340 |
(C22×C4).15C23 = C4⋊C4.12D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).15C2^3 | 128,341 |
(C22×C4).16C23 = (C2×C4).5D8 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).16C2^3 | 128,342 |
(C22×C4).17C23 = (C2×C4).SD16 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).17C2^3 | 128,343 |
(C22×C4).18C23 = C24.15D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).18C2^3 | 128,344 |
(C22×C4).19C23 = C24.16D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).19C2^3 | 128,345 |
(C22×C4).20C23 = C24.17D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).20C2^3 | 128,346 |
(C22×C4).21C23 = C4⋊C4.18D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).21C2^3 | 128,347 |
(C22×C4).22C23 = C4⋊C4.19D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).22C2^3 | 128,348 |
(C22×C4).23C23 = C4⋊C4.20D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).23C2^3 | 128,349 |
(C22×C4).24C23 = C24.18D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).24C2^3 | 128,350 |
(C22×C4).25C23 = C4○D4.D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 16 | 8+ | (C2^2xC4).25C2^3 | 128,527 |
(C22×C4).26C23 = (C22×Q8)⋊C4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | 8- | (C2^2xC4).26C2^3 | 128,528 |
(C22×C4).27C23 = C24.6(C2×C4) | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 16 | 8+ | (C2^2xC4).27C2^3 | 128,561 |
(C22×C4).28C23 = (C2×Q8).211D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | 8- | (C2^2xC4).28C2^3 | 128,562 |
(C22×C4).29C23 = M4(2).46D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | 8- | (C2^2xC4).29C2^3 | 128,634 |
(C22×C4).30C23 = M4(2).47D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 16 | 8+ | (C2^2xC4).30C2^3 | 128,635 |
(C22×C4).31C23 = C42.5D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 16 | 8+ | (C2^2xC4).31C2^3 | 128,636 |
(C22×C4).32C23 = C42.6D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | 8- | (C2^2xC4).32C2^3 | 128,637 |
(C22×C4).33C23 = C4.(C4×D4) | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | 8- | (C2^2xC4).33C2^3 | 128,641 |
(C22×C4).34C23 = (C2×C8)⋊4D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 16 | 8+ | (C2^2xC4).34C2^3 | 128,642 |
(C22×C4).35C23 = C42⋊D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 16 | 8+ | (C2^2xC4).35C2^3 | 128,643 |
(C22×C4).36C23 = C42.7D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | 8- | (C2^2xC4).36C2^3 | 128,644 |
(C22×C4).37C23 = M4(2)⋊21D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 16 | 8+ | (C2^2xC4).37C2^3 | 128,646 |
(C22×C4).38C23 = M4(2).50D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | 8- | (C2^2xC4).38C2^3 | 128,647 |
(C22×C4).39C23 = M4(2)⋊5D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 16 | 8+ | (C2^2xC4).39C2^3 | 128,740 |
(C22×C4).40C23 = M4(2).D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | 8- | (C2^2xC4).40C2^3 | 128,741 |
(C22×C4).41C23 = M4(2).8D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 16 | 8+ | (C2^2xC4).41C2^3 | 128,780 |
(C22×C4).42C23 = M4(2).9D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | 8- | (C2^2xC4).42C2^3 | 128,781 |
(C22×C4).43C23 = C24.Q8 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 16 | 8+ | (C2^2xC4).43C2^3 | 128,801 |
(C22×C4).44C23 = M4(2).15D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | 8- | (C2^2xC4).44C2^3 | 128,802 |
(C22×C4).45C23 = (C2×C8).D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 16 | 8+ | (C2^2xC4).45C2^3 | 128,813 |
(C22×C4).46C23 = (C2×C8).6D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | 8- | (C2^2xC4).46C2^3 | 128,814 |
(C22×C4).47C23 = C24.94D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).47C2^3 | 128,1137 |
(C22×C4).48C23 = C24.95D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).48C2^3 | 128,1144 |
(C22×C4).49C23 = C24.249C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).49C2^3 | 128,1146 |
(C22×C4).50C23 = C23.315C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).50C2^3 | 128,1147 |
(C22×C4).51C23 = C23.316C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).51C2^3 | 128,1148 |
(C22×C4).52C23 = C24.252C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).52C2^3 | 128,1149 |
(C22×C4).53C23 = C24.563C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).53C2^3 | 128,1151 |
(C22×C4).54C23 = C24.254C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).54C2^3 | 128,1152 |
(C22×C4).55C23 = C23.321C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).55C2^3 | 128,1153 |
(C22×C4).56C23 = C23.335C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).56C2^3 | 128,1167 |
(C22×C4).57C23 = C24.565C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).57C2^3 | 128,1168 |
(C22×C4).58C23 = C24⋊4Q8 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).58C2^3 | 128,1169 |
(C22×C4).59C23 = C24.567C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).59C2^3 | 128,1170 |
(C22×C4).60C23 = C24.569C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).60C2^3 | 128,1174 |
(C22×C4).61C23 = C23.344C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).61C2^3 | 128,1176 |
(C22×C4).62C23 = C24.278C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).62C2^3 | 128,1189 |
(C22×C4).63C23 = C24.279C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).63C2^3 | 128,1190 |
(C22×C4).64C23 = C23.368C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).64C2^3 | 128,1200 |
(C22×C4).65C23 = C23.369C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).65C2^3 | 128,1201 |
(C22×C4).66C23 = C23.380C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).66C2^3 | 128,1212 |
(C22×C4).67C23 = C24.573C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).67C2^3 | 128,1213 |
(C22×C4).68C23 = C23.382C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).68C2^3 | 128,1214 |
(C22×C4).69C23 = C24.576C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).69C2^3 | 128,1216 |
(C22×C4).70C23 = C24.299C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).70C2^3 | 128,1218 |
(C22×C4).71C23 = C24.300C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).71C2^3 | 128,1219 |
(C22×C4).72C23 = C24.301C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).72C2^3 | 128,1221 |
(C22×C4).73C23 = C24.577C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).73C2^3 | 128,1225 |
(C22×C4).74C23 = C24.304C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).74C2^3 | 128,1226 |
(C22×C4).75C23 = C23.395C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).75C2^3 | 128,1227 |
(C22×C4).76C23 = C23.396C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).76C2^3 | 128,1228 |
(C22×C4).77C23 = C23.397C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).77C2^3 | 128,1229 |
(C22×C4).78C23 = C24.308C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).78C2^3 | 128,1231 |
(C22×C4).79C23 = C23.402C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).79C2^3 | 128,1234 |
(C22×C4).80C23 = C23.405C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).80C2^3 | 128,1237 |
(C22×C4).81C23 = C23.410C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).81C2^3 | 128,1242 |
(C22×C4).82C23 = C23.411C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).82C2^3 | 128,1243 |
(C22×C4).83C23 = C24.309C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).83C2^3 | 128,1247 |
(C22×C4).84C23 = C23.416C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).84C2^3 | 128,1248 |
(C22×C4).85C23 = C23.417C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).85C2^3 | 128,1249 |
(C22×C4).86C23 = C23.424C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).86C2^3 | 128,1256 |
(C22×C4).87C23 = C23.425C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).87C2^3 | 128,1257 |
(C22×C4).88C23 = C23.426C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).88C2^3 | 128,1258 |
(C22×C4).89C23 = C24.315C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).89C2^3 | 128,1259 |
(C22×C4).90C23 = C23.430C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).90C2^3 | 128,1262 |
(C22×C4).91C23 = C23.431C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).91C2^3 | 128,1263 |
(C22×C4).92C23 = C42⋊17D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).92C2^3 | 128,1267 |
(C22×C4).93C23 = C42.165D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).93C2^3 | 128,1268 |
(C22×C4).94C23 = C42⋊18D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).94C2^3 | 128,1269 |
(C22×C4).95C23 = C42.166D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).95C2^3 | 128,1270 |
(C22×C4).96C23 = C42.170D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).96C2^3 | 128,1279 |
(C22×C4).97C23 = C42.35Q8 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).97C2^3 | 128,1284 |
(C22×C4).98C23 = C23.458C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).98C2^3 | 128,1290 |
(C22×C4).99C23 = C23.461C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).99C2^3 | 128,1293 |
(C22×C4).100C23 = C42.173D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).100C2^3 | 128,1295 |
(C22×C4).101C23 = C24.583C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).101C2^3 | 128,1296 |
(C22×C4).102C23 = C42.177D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).102C2^3 | 128,1300 |
(C22×C4).103C23 = C42.36Q8 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).103C2^3 | 128,1302 |
(C22×C4).104C23 = C23.472C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).104C2^3 | 128,1304 |
(C22×C4).105C23 = C23.473C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).105C2^3 | 128,1305 |
(C22×C4).106C23 = C24.339C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).106C2^3 | 128,1307 |
(C22×C4).107C23 = C24.340C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).107C2^3 | 128,1308 |
(C22×C4).108C23 = C24.341C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).108C2^3 | 128,1309 |
(C22×C4).109C23 = C23.478C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).109C2^3 | 128,1310 |
(C22×C4).110C23 = C42.178D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).110C2^3 | 128,1312 |
(C22×C4).111C23 = C42.179D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).111C2^3 | 128,1313 |
(C22×C4).112C23 = C42.180D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).112C2^3 | 128,1314 |
(C22×C4).113C23 = C24.345C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).113C2^3 | 128,1319 |
(C22×C4).114C23 = C23.488C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).114C2^3 | 128,1320 |
(C22×C4).115C23 = C23.493C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).115C2^3 | 128,1325 |
(C22×C4).116C23 = C23.494C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).116C2^3 | 128,1326 |
(C22×C4).117C23 = C24.347C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).117C2^3 | 128,1327 |
(C22×C4).118C23 = C23.496C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).118C2^3 | 128,1328 |
(C22×C4).119C23 = C24.348C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).119C2^3 | 128,1329 |
(C22×C4).120C23 = C42⋊22D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).120C2^3 | 128,1330 |
(C22×C4).121C23 = C42.183D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).121C2^3 | 128,1331 |
(C22×C4).122C23 = C23.500C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).122C2^3 | 128,1332 |
(C22×C4).123C23 = C23.502C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).123C2^3 | 128,1334 |
(C22×C4).124C23 = C42⋊8Q8 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).124C2^3 | 128,1337 |
(C22×C4).125C23 = C42.38Q8 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).125C2^3 | 128,1338 |
(C22×C4).126C23 = C42.185D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).126C2^3 | 128,1343 |
(C22×C4).127C23 = C24⋊10D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).127C2^3 | 128,1349 |
(C22×C4).128C23 = C24.587C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).128C2^3 | 128,1350 |
(C22×C4).129C23 = C42⋊27D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).129C2^3 | 128,1351 |
(C22×C4).130C23 = C42⋊28D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).130C2^3 | 128,1352 |
(C22×C4).131C23 = C42.186D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).131C2^3 | 128,1353 |
(C22×C4).132C23 = C24.97D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).132C2^3 | 128,1354 |
(C22×C4).133C23 = C24.589C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).133C2^3 | 128,1355 |
(C22×C4).134C23 = C23.524C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).134C2^3 | 128,1356 |
(C22×C4).135C23 = C23.525C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).135C2^3 | 128,1357 |
(C22×C4).136C23 = C24⋊5Q8 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).136C2^3 | 128,1358 |
(C22×C4).137C23 = C23.527C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).137C2^3 | 128,1359 |
(C22×C4).138C23 = C42.187D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).138C2^3 | 128,1360 |
(C22×C4).139C23 = C42.188D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).139C2^3 | 128,1361 |
(C22×C4).140C23 = C23.530C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).140C2^3 | 128,1362 |
(C22×C4).141C23 = C42⋊29D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).141C2^3 | 128,1363 |
(C22×C4).142C23 = C42.189D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).142C2^3 | 128,1364 |
(C22×C4).143C23 = C42.190D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).143C2^3 | 128,1365 |
(C22×C4).144C23 = C42.191D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).144C2^3 | 128,1366 |
(C22×C4).145C23 = C23.535C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).145C2^3 | 128,1367 |
(C22×C4).146C23 = C42⋊30D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).146C2^3 | 128,1368 |
(C22×C4).147C23 = C42.192D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).147C2^3 | 128,1369 |
(C22×C4).148C23 = C24.374C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).148C2^3 | 128,1370 |
(C22×C4).149C23 = C24.592C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).149C2^3 | 128,1371 |
(C22×C4).150C23 = C42.193D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).150C2^3 | 128,1372 |
(C22×C4).151C23 = C42.194D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).151C2^3 | 128,1373 |
(C22×C4).152C23 = C42.195D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).152C2^3 | 128,1374 |
(C22×C4).153C23 = C23.543C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).153C2^3 | 128,1375 |
(C22×C4).154C23 = C23.544C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).154C2^3 | 128,1376 |
(C22×C4).155C23 = C23.545C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).155C2^3 | 128,1377 |
(C22×C4).156C23 = C23.546C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).156C2^3 | 128,1378 |
(C22×C4).157C23 = C42.39Q8 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).157C2^3 | 128,1379 |
(C22×C4).158C23 = C23.548C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).158C2^3 | 128,1380 |
(C22×C4).159C23 = C24.375C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).159C2^3 | 128,1381 |
(C22×C4).160C23 = C23.550C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).160C2^3 | 128,1382 |
(C22×C4).161C23 = C23.551C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).161C2^3 | 128,1383 |
(C22×C4).162C23 = C24.376C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).162C2^3 | 128,1384 |
(C22×C4).163C23 = C23.553C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).163C2^3 | 128,1385 |
(C22×C4).164C23 = C23.554C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).164C2^3 | 128,1386 |
(C22×C4).165C23 = C23.555C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).165C2^3 | 128,1387 |
(C22×C4).166C23 = C24.377C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).166C2^3 | 128,1393 |
(C22×C4).167C23 = C42⋊32D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).167C2^3 | 128,1394 |
(C22×C4).168C23 = C24.378C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).168C2^3 | 128,1395 |
(C22×C4).169C23 = C42.198D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).169C2^3 | 128,1396 |
(C22×C4).170C23 = C24.379C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).170C2^3 | 128,1397 |
(C22×C4).171C23 = C42⋊11Q8 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).171C2^3 | 128,1398 |
(C22×C4).172C23 = C23.567C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).172C2^3 | 128,1399 |
(C22×C4).173C23 = C23.568C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).173C2^3 | 128,1400 |
(C22×C4).174C23 = C23.569C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).174C2^3 | 128,1401 |
(C22×C4).175C23 = C23.570C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).175C2^3 | 128,1402 |
(C22×C4).176C23 = C23.578C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).176C2^3 | 128,1410 |
(C22×C4).177C23 = C25⋊C22 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).177C2^3 | 128,1411 |
(C22×C4).178C23 = C24.389C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).178C2^3 | 128,1414 |
(C22×C4).179C23 = C23.584C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).179C2^3 | 128,1416 |
(C22×C4).180C23 = C23.585C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).180C2^3 | 128,1417 |
(C22×C4).181C23 = C23.590C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).181C2^3 | 128,1422 |
(C22×C4).182C23 = C23.591C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).182C2^3 | 128,1423 |
(C22×C4).183C23 = C23.597C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).183C2^3 | 128,1429 |
(C22×C4).184C23 = C23.602C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).184C2^3 | 128,1434 |
(C22×C4).185C23 = C23.603C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).185C2^3 | 128,1435 |
(C22×C4).186C23 = C23.608C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).186C2^3 | 128,1440 |
(C22×C4).187C23 = C24.411C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).187C2^3 | 128,1441 |
(C22×C4).188C23 = C24.412C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).188C2^3 | 128,1442 |
(C22×C4).189C23 = C23.611C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).189C2^3 | 128,1443 |
(C22×C4).190C23 = C23.612C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).190C2^3 | 128,1444 |
(C22×C4).191C23 = C23.613C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).191C2^3 | 128,1445 |
(C22×C4).192C23 = C24.413C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).192C2^3 | 128,1446 |
(C22×C4).193C23 = C23.615C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).193C2^3 | 128,1447 |
(C22×C4).194C23 = C23.616C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).194C2^3 | 128,1448 |
(C22×C4).195C23 = C23.619C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).195C2^3 | 128,1451 |
(C22×C4).196C23 = C23.625C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).196C2^3 | 128,1457 |
(C22×C4).197C23 = C24.420C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).197C2^3 | 128,1460 |
(C22×C4).198C23 = C24.421C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).198C2^3 | 128,1461 |
(C22×C4).199C23 = C23.630C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).199C2^3 | 128,1462 |
(C22×C4).200C23 = C23.631C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).200C2^3 | 128,1463 |
(C22×C4).201C23 = C23.637C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).201C2^3 | 128,1469 |
(C22×C4).202C23 = C23.640C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).202C2^3 | 128,1472 |
(C22×C4).203C23 = C24.428C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).203C2^3 | 128,1474 |
(C22×C4).204C23 = C23.643C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).204C2^3 | 128,1475 |
(C22×C4).205C23 = C24.432C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).205C2^3 | 128,1478 |
(C22×C4).206C23 = C24.434C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).206C2^3 | 128,1480 |
(C22×C4).207C23 = C23.655C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).207C2^3 | 128,1487 |
(C22×C4).208C23 = C23.663C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).208C2^3 | 128,1495 |
(C22×C4).209C23 = C23.668C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).209C2^3 | 128,1500 |
(C22×C4).210C23 = C24.445C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).210C2^3 | 128,1502 |
(C22×C4).211C23 = C23.674C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).211C2^3 | 128,1506 |
(C22×C4).212C23 = C23.676C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).212C2^3 | 128,1508 |
(C22×C4).213C23 = C24.448C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).213C2^3 | 128,1512 |
(C22×C4).214C23 = C24.450C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).214C2^3 | 128,1516 |
(C22×C4).215C23 = C23.688C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).215C2^3 | 128,1520 |
(C22×C4).216C23 = C24.454C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).216C2^3 | 128,1522 |
(C22×C4).217C23 = C23.691C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).217C2^3 | 128,1523 |
(C22×C4).218C23 = C23.699C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).218C2^3 | 128,1531 |
(C22×C4).219C23 = C23.702C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).219C2^3 | 128,1534 |
(C22×C4).220C23 = C24.456C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).220C2^3 | 128,1536 |
(C22×C4).221C23 = C23.705C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).221C2^3 | 128,1537 |
(C22×C4).222C23 = C23.709C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).222C2^3 | 128,1541 |
(C22×C4).223C23 = C24⋊11D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).223C2^3 | 128,1544 |
(C22×C4).224C23 = C24.459C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).224C2^3 | 128,1545 |
(C22×C4).225C23 = C23.714C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).225C2^3 | 128,1546 |
(C22×C4).226C23 = C23.715C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).226C2^3 | 128,1547 |
(C22×C4).227C23 = C23.716C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).227C2^3 | 128,1548 |
(C22×C4).228C23 = C24.462C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).228C2^3 | 128,1549 |
(C22×C4).229C23 = C42⋊33D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).229C2^3 | 128,1550 |
(C22×C4).230C23 = C42⋊34D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).230C2^3 | 128,1551 |
(C22×C4).231C23 = C42.199D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).231C2^3 | 128,1552 |
(C22×C4).232C23 = C42.200D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).232C2^3 | 128,1553 |
(C22×C4).233C23 = C42.201D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).233C2^3 | 128,1554 |
(C22×C4).234C23 = C42⋊35D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).234C2^3 | 128,1555 |
(C22×C4).235C23 = C23.724C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).235C2^3 | 128,1556 |
(C22×C4).236C23 = C23.725C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).236C2^3 | 128,1557 |
(C22×C4).237C23 = C23.726C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).237C2^3 | 128,1558 |
(C22×C4).238C23 = C23.727C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).238C2^3 | 128,1559 |
(C22×C4).239C23 = C23.728C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).239C2^3 | 128,1560 |
(C22×C4).240C23 = C23.729C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).240C2^3 | 128,1561 |
(C22×C4).241C23 = C23.730C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).241C2^3 | 128,1562 |
(C22×C4).242C23 = C23.731C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).242C2^3 | 128,1563 |
(C22×C4).243C23 = C23.732C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).243C2^3 | 128,1564 |
(C22×C4).244C23 = C23.733C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).244C2^3 | 128,1565 |
(C22×C4).245C23 = C23.734C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).245C2^3 | 128,1566 |
(C22×C4).246C23 = C23.735C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).246C2^3 | 128,1567 |
(C22×C4).247C23 = C23.736C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).247C2^3 | 128,1568 |
(C22×C4).248C23 = C23.737C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).248C2^3 | 128,1569 |
(C22×C4).249C23 = C23.738C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).249C2^3 | 128,1570 |
(C22×C4).250C23 = C23.739C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).250C2^3 | 128,1571 |
(C22×C4).251C23 = C24⋊6Q8 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).251C2^3 | 128,1572 |
(C22×C4).252C23 = C23.741C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).252C2^3 | 128,1573 |
(C22×C4).253C23 = C24.15Q8 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).253C2^3 | 128,1574 |
(C22×C4).254C23 = C42⋊12Q8 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).254C2^3 | 128,1575 |
(C22×C4).255C23 = C42⋊13Q8 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).255C2^3 | 128,1576 |
(C22×C4).256C23 = C42.40Q8 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).256C2^3 | 128,1577 |
(C22×C4).257C23 = C24⋊13D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).257C2^3 | 128,1579 |
(C22×C4).258C23 = C24⋊8Q8 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).258C2^3 | 128,1580 |
(C22×C4).259C23 = C24.166D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).259C2^3 | 128,1581 |
(C22×C4).260C23 = C42⋊46D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).260C2^3 | 128,1582 |
(C22×C4).261C23 = C42.439D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).261C2^3 | 128,1583 |
(C22×C4).262C23 = C24.598C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).262C2^3 | 128,1586 |
(C22×C4).263C23 = C24.599C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).263C2^3 | 128,1587 |
(C22×C4).264C23 = C42.440D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).264C2^3 | 128,1589 |
(C22×C4).265C23 = C43.15C2 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).265C2^3 | 128,1591 |
(C22×C4).266C23 = C43⋊14C2 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).266C2^3 | 128,1593 |
(C22×C4).267C23 = C42⋊18Q8 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).267C2^3 | 128,1594 |
(C22×C4).268C23 = C42⋊15Q8 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).268C2^3 | 128,1595 |
(C22×C4).269C23 = C43.18C2 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).269C2^3 | 128,1596 |
(C22×C4).270C23 = C42⋊19Q8 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).270C2^3 | 128,1600 |
(C22×C4).271C23 = C23.C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 16 | 8+ | (C2^2xC4).271C2^3 | 128,1615 |
(C22×C4).272C23 = C23.4C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | 8- | (C2^2xC4).272C2^3 | 128,1616 |
(C22×C4).273C23 = M4(2).24C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 16 | 8+ | (C2^2xC4).273C2^3 | 128,1620 |
(C22×C4).274C23 = M4(2).25C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | 8- | (C2^2xC4).274C2^3 | 128,1621 |
(C22×C4).275C23 = C4○D4⋊D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).275C2^3 | 128,1740 |
(C22×C4).276C23 = D4.(C2×D4) | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).276C2^3 | 128,1741 |
(C22×C4).277C23 = (C2×Q8)⋊16D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).277C2^3 | 128,1742 |
(C22×C4).278C23 = Q8.(C2×D4) | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).278C2^3 | 128,1743 |
(C22×C4).279C23 = (C2×D4)⋊21D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).279C2^3 | 128,1744 |
(C22×C4).280C23 = (C2×Q8)⋊17D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).280C2^3 | 128,1745 |
(C22×C4).281C23 = M4(2)⋊C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 16 | 8+ | (C2^2xC4).281C2^3 | 128,1751 |
(C22×C4).282C23 = M4(2).C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | 8- | (C2^2xC4).282C2^3 | 128,1752 |
(C22×C4).283C23 = C42.12C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 16 | 8+ | (C2^2xC4).283C2^3 | 128,1753 |
(C22×C4).284C23 = C42.13C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | 8- | (C2^2xC4).284C2^3 | 128,1754 |
(C22×C4).285C23 = C23.9C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 16 | 8+ | (C2^2xC4).285C2^3 | 128,1759 |
(C22×C4).286C23 = C23.10C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | 8- | (C2^2xC4).286C2^3 | 128,1760 |
(C22×C4).287C23 = M4(2).37D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 16 | 8+ | (C2^2xC4).287C2^3 | 128,1800 |
(C22×C4).288C23 = M4(2).38D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | 8- | (C2^2xC4).288C2^3 | 128,1801 |
(C22×C4).289C23 = C42.352C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).289C2^3 | 128,1850 |
(C22×C4).290C23 = C42.353C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).290C2^3 | 128,1851 |
(C22×C4).291C23 = C42.354C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).291C2^3 | 128,1852 |
(C22×C4).292C23 = C42.355C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).292C2^3 | 128,1853 |
(C22×C4).293C23 = C42.356C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).293C2^3 | 128,1854 |
(C22×C4).294C23 = C42.357C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).294C2^3 | 128,1855 |
(C22×C4).295C23 = C42.358C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).295C2^3 | 128,1856 |
(C22×C4).296C23 = C42.359C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).296C2^3 | 128,1857 |
(C22×C4).297C23 = C42.360C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).297C2^3 | 128,1858 |
(C22×C4).298C23 = C42.361C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).298C2^3 | 128,1859 |
(C22×C4).299C23 = C4.2+ 1+4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).299C2^3 | 128,1930 |
(C22×C4).300C23 = C4.142+ 1+4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).300C2^3 | 128,1931 |
(C22×C4).301C23 = C4.152+ 1+4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).301C2^3 | 128,1932 |
(C22×C4).302C23 = C4.162+ 1+4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).302C2^3 | 128,1933 |
(C22×C4).303C23 = C4.172+ 1+4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).303C2^3 | 128,1934 |
(C22×C4).304C23 = C4.182+ 1+4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).304C2^3 | 128,1935 |
(C22×C4).305C23 = C4.192+ 1+4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).305C2^3 | 128,1936 |
(C22×C4).306C23 = C42.406C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).306C2^3 | 128,1952 |
(C22×C4).307C23 = C42.407C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).307C2^3 | 128,1953 |
(C22×C4).308C23 = C42.408C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).308C2^3 | 128,1954 |
(C22×C4).309C23 = C42.409C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).309C2^3 | 128,1955 |
(C22×C4).310C23 = C42.410C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).310C2^3 | 128,1956 |
(C22×C4).311C23 = C42.411C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).311C2^3 | 128,1957 |
(C22×C4).312C23 = C42.423C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).312C2^3 | 128,1973 |
(C22×C4).313C23 = C42.424C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).313C2^3 | 128,1974 |
(C22×C4).314C23 = C42.425C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).314C2^3 | 128,1975 |
(C22×C4).315C23 = C42.426C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).315C2^3 | 128,1976 |
(C22×C4).316C23 = D8⋊9D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).316C2^3 | 128,1996 |
(C22×C4).317C23 = SD16⋊D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).317C2^3 | 128,1997 |
(C22×C4).318C23 = SD16⋊6D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).318C2^3 | 128,1998 |
(C22×C4).319C23 = Q16⋊9D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).319C2^3 | 128,2002 |
(C22×C4).320C23 = D8⋊4D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).320C2^3 | 128,2004 |
(C22×C4).321C23 = D8⋊5D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).321C2^3 | 128,2005 |
(C22×C4).322C23 = SD16⋊1D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).322C2^3 | 128,2006 |
(C22×C4).323C23 = SD16⋊2D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).323C2^3 | 128,2007 |
(C22×C4).324C23 = SD16⋊3D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).324C2^3 | 128,2008 |
(C22×C4).325C23 = Q16⋊4D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).325C2^3 | 128,2009 |
(C22×C4).326C23 = Q16⋊5D4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).326C2^3 | 128,2010 |
(C22×C4).327C23 = C42.471C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).327C2^3 | 128,2054 |
(C22×C4).328C23 = C42.472C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).328C2^3 | 128,2055 |
(C22×C4).329C23 = C42.473C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).329C2^3 | 128,2056 |
(C22×C4).330C23 = C42.474C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).330C2^3 | 128,2057 |
(C22×C4).331C23 = C42.475C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).331C2^3 | 128,2058 |
(C22×C4).332C23 = C42.476C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).332C2^3 | 128,2059 |
(C22×C4).333C23 = C42.477C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).333C2^3 | 128,2060 |
(C22×C4).334C23 = C42.478C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).334C2^3 | 128,2061 |
(C22×C4).335C23 = C42.479C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).335C2^3 | 128,2062 |
(C22×C4).336C23 = C42.480C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).336C2^3 | 128,2063 |
(C22×C4).337C23 = C42.481C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).337C2^3 | 128,2064 |
(C22×C4).338C23 = C42.482C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).338C2^3 | 128,2065 |
(C22×C4).339C23 = C42.57C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).339C2^3 | 128,2075 |
(C22×C4).340C23 = C42.58C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).340C2^3 | 128,2076 |
(C22×C4).341C23 = C42.59C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).341C2^3 | 128,2077 |
(C22×C4).342C23 = C42.60C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).342C2^3 | 128,2078 |
(C22×C4).343C23 = C42.492C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).343C2^3 | 128,2083 |
(C22×C4).344C23 = C42.493C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).344C2^3 | 128,2084 |
(C22×C4).345C23 = C42.494C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).345C2^3 | 128,2085 |
(C22×C4).346C23 = C42.495C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).346C2^3 | 128,2086 |
(C22×C4).347C23 = C42.496C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).347C2^3 | 128,2087 |
(C22×C4).348C23 = C42.497C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).348C2^3 | 128,2088 |
(C22×C4).349C23 = C42.498C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).349C2^3 | 128,2089 |
(C22×C4).350C23 = C22.74C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).350C2^3 | 128,2217 |
(C22×C4).351C23 = C22.77C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).351C2^3 | 128,2220 |
(C22×C4).352C23 = C22.78C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).352C2^3 | 128,2221 |
(C22×C4).353C23 = C22.80C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).353C2^3 | 128,2223 |
(C22×C4).354C23 = C22.81C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).354C2^3 | 128,2224 |
(C22×C4).355C23 = C22.82C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).355C2^3 | 128,2225 |
(C22×C4).356C23 = C22.83C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).356C2^3 | 128,2226 |
(C22×C4).357C23 = C22.84C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).357C2^3 | 128,2227 |
(C22×C4).358C23 = C4⋊2+ 1+4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).358C2^3 | 128,2228 |
(C22×C4).359C23 = C4⋊2- 1+4 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).359C2^3 | 128,2229 |
(C22×C4).360C23 = C22.88C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).360C2^3 | 128,2231 |
(C22×C4).361C23 = C22.89C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).361C2^3 | 128,2232 |
(C22×C4).362C23 = C22.90C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).362C2^3 | 128,2233 |
(C22×C4).363C23 = C22.92C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).363C2^3 | 128,2235 |
(C22×C4).364C23 = C22.93C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).364C2^3 | 128,2236 |
(C22×C4).365C23 = C22.94C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).365C2^3 | 128,2237 |
(C22×C4).366C23 = C22.95C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).366C2^3 | 128,2238 |
(C22×C4).367C23 = C22.96C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).367C2^3 | 128,2239 |
(C22×C4).368C23 = C22.97C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).368C2^3 | 128,2240 |
(C22×C4).369C23 = C22.99C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).369C2^3 | 128,2242 |
(C22×C4).370C23 = C22.100C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).370C2^3 | 128,2243 |
(C22×C4).371C23 = C22.101C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).371C2^3 | 128,2244 |
(C22×C4).372C23 = C22.102C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).372C2^3 | 128,2245 |
(C22×C4).373C23 = C22.103C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).373C2^3 | 128,2246 |
(C22×C4).374C23 = C22.104C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).374C2^3 | 128,2247 |
(C22×C4).375C23 = C22.105C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).375C2^3 | 128,2248 |
(C22×C4).376C23 = C22.106C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).376C2^3 | 128,2249 |
(C22×C4).377C23 = C22.108C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).377C2^3 | 128,2251 |
(C22×C4).378C23 = C23.144C24 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).378C2^3 | 128,2252 |
(C22×C4).379C23 = C22.110C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).379C2^3 | 128,2253 |
(C22×C4).380C23 = C22.111C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).380C2^3 | 128,2254 |
(C22×C4).381C23 = C22.113C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).381C2^3 | 128,2256 |
(C22×C4).382C23 = C22.122C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).382C2^3 | 128,2265 |
(C22×C4).383C23 = C22.123C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).383C2^3 | 128,2266 |
(C22×C4).384C23 = C22.124C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).384C2^3 | 128,2267 |
(C22×C4).385C23 = C22.125C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).385C2^3 | 128,2268 |
(C22×C4).386C23 = C22.126C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).386C2^3 | 128,2269 |
(C22×C4).387C23 = C22.127C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).387C2^3 | 128,2270 |
(C22×C4).388C23 = C22.128C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).388C2^3 | 128,2271 |
(C22×C4).389C23 = C22.129C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).389C2^3 | 128,2272 |
(C22×C4).390C23 = C22.130C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).390C2^3 | 128,2273 |
(C22×C4).391C23 = C22.131C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).391C2^3 | 128,2274 |
(C22×C4).392C23 = C22.132C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).392C2^3 | 128,2275 |
(C22×C4).393C23 = C22.133C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).393C2^3 | 128,2276 |
(C22×C4).394C23 = C22.134C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).394C2^3 | 128,2277 |
(C22×C4).395C23 = C22.135C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).395C2^3 | 128,2278 |
(C22×C4).396C23 = C22.136C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).396C2^3 | 128,2279 |
(C22×C4).397C23 = C22.137C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).397C2^3 | 128,2280 |
(C22×C4).398C23 = C22.138C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).398C2^3 | 128,2281 |
(C22×C4).399C23 = C22.139C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).399C2^3 | 128,2282 |
(C22×C4).400C23 = C22.140C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).400C2^3 | 128,2283 |
(C22×C4).401C23 = C22.141C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).401C2^3 | 128,2284 |
(C22×C4).402C23 = C22.142C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).402C2^3 | 128,2285 |
(C22×C4).403C23 = C22.143C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).403C2^3 | 128,2286 |
(C22×C4).404C23 = C22.144C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).404C2^3 | 128,2287 |
(C22×C4).405C23 = C22.146C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).405C2^3 | 128,2289 |
(C22×C4).406C23 = C22.147C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).406C2^3 | 128,2290 |
(C22×C4).407C23 = C22.148C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).407C2^3 | 128,2291 |
(C22×C4).408C23 = C22.149C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).408C2^3 | 128,2292 |
(C22×C4).409C23 = C22.150C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).409C2^3 | 128,2293 |
(C22×C4).410C23 = C22.151C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).410C2^3 | 128,2294 |
(C22×C4).411C23 = C22.152C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).411C2^3 | 128,2295 |
(C22×C4).412C23 = C22.153C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).412C2^3 | 128,2296 |
(C22×C4).413C23 = C22.154C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).413C2^3 | 128,2297 |
(C22×C4).414C23 = C22.155C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).414C2^3 | 128,2298 |
(C22×C4).415C23 = C22.156C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).415C2^3 | 128,2299 |
(C22×C4).416C23 = C22.157C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).416C2^3 | 128,2300 |
(C22×C4).417C23 = D8⋊C23 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 16 | 8+ | (C2^2xC4).417C2^3 | 128,2317 |
(C22×C4).418C23 = C4.C25 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | 8- | (C2^2xC4).418C2^3 | 128,2318 |
(C22×C4).419C23 = 2- 1+6 | φ: C23/C1 → C23 ⊆ Aut C22×C4 | 32 | 8- | (C2^2xC4).419C2^3 | 128,2327 |
(C22×C4).420C23 = C2×C23⋊C8 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).420C2^3 | 128,188 |
(C22×C4).421C23 = C2×C22.M4(2) | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).421C2^3 | 128,189 |
(C22×C4).422C23 = C42.371D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).422C2^3 | 128,190 |
(C22×C4).423C23 = C23.8M4(2) | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).423C2^3 | 128,191 |
(C22×C4).424C23 = C42.393D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).424C2^3 | 128,192 |
(C22×C4).425C23 = C42.394D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).425C2^3 | 128,193 |
(C22×C4).426C23 = C25.3C4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 16 | | (C2^2xC4).426C2^3 | 128,194 |
(C22×C4).427C23 = (C2×C4)⋊M4(2) | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).427C2^3 | 128,195 |
(C22×C4).428C23 = C42.42D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).428C2^3 | 128,196 |
(C22×C4).429C23 = C23⋊M4(2) | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).429C2^3 | 128,197 |
(C22×C4).430C23 = C42.43D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).430C2^3 | 128,198 |
(C22×C4).431C23 = C42.44D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).431C2^3 | 128,199 |
(C22×C4).432C23 = C23⋊C8⋊C2 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).432C2^3 | 128,200 |
(C22×C4).433C23 = C42.395D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).433C2^3 | 128,201 |
(C22×C4).434C23 = C42.396D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).434C2^3 | 128,202 |
(C22×C4).435C23 = C24.(C2×C4) | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).435C2^3 | 128,203 |
(C22×C4).436C23 = C24.45(C2×C4) | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).436C2^3 | 128,204 |
(C22×C4).437C23 = C42.372D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).437C2^3 | 128,205 |
(C22×C4).438C23 = C2×C23.7Q8 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).438C2^3 | 128,1010 |
(C22×C4).439C23 = C2×C23.34D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).439C2^3 | 128,1011 |
(C22×C4).440C23 = C25.85C22 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).440C2^3 | 128,1012 |
(C22×C4).441C23 = C2×C42⋊8C4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).441C2^3 | 128,1013 |
(C22×C4).442C23 = C2×C42⋊5C4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).442C2^3 | 128,1014 |
(C22×C4).443C23 = C23.165C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).443C2^3 | 128,1015 |
(C22×C4).444C23 = C2×C42⋊9C4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).444C2^3 | 128,1016 |
(C22×C4).445C23 = C23.167C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).445C2^3 | 128,1017 |
(C22×C4).446C23 = C2×C23.8Q8 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).446C2^3 | 128,1018 |
(C22×C4).447C23 = C2×C23.23D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).447C2^3 | 128,1019 |
(C22×C4).448C23 = C2×C23.65C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).448C2^3 | 128,1023 |
(C22×C4).449C23 = C2×C24.3C22 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).449C2^3 | 128,1024 |
(C22×C4).450C23 = C2×C23.67C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).450C2^3 | 128,1026 |
(C22×C4).451C23 = C23.178C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).451C2^3 | 128,1028 |
(C22×C4).452C23 = C23.179C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).452C2^3 | 128,1029 |
(C22×C4).453C23 = C4×C4⋊D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).453C2^3 | 128,1032 |
(C22×C4).454C23 = C4×C4⋊1D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).454C2^3 | 128,1038 |
(C22×C4).455C23 = C24.90D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).455C2^3 | 128,1040 |
(C22×C4).456C23 = C23.191C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).456C2^3 | 128,1041 |
(C22×C4).457C23 = C23.192C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).457C2^3 | 128,1042 |
(C22×C4).458C23 = C24.542C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).458C2^3 | 128,1043 |
(C22×C4).459C23 = C23.194C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).459C2^3 | 128,1044 |
(C22×C4).460C23 = C23.195C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).460C2^3 | 128,1045 |
(C22×C4).461C23 = C24.192C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).461C2^3 | 128,1046 |
(C22×C4).462C23 = C24.91D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).462C2^3 | 128,1047 |
(C22×C4).463C23 = C24.545C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).463C2^3 | 128,1048 |
(C22×C4).464C23 = C23.199C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).464C2^3 | 128,1049 |
(C22×C4).465C23 = C24.547C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).465C2^3 | 128,1050 |
(C22×C4).466C23 = C23.201C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).466C2^3 | 128,1051 |
(C22×C4).467C23 = C23.202C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).467C2^3 | 128,1052 |
(C22×C4).468C23 = C23.203C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).468C2^3 | 128,1053 |
(C22×C4).469C23 = C24.195C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).469C2^3 | 128,1054 |
(C22×C4).470C23 = C42.159D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).470C2^3 | 128,1055 |
(C22×C4).471C23 = C42⋊13D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).471C2^3 | 128,1056 |
(C22×C4).472C23 = C24.198C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).472C2^3 | 128,1057 |
(C22×C4).473C23 = C42.160D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).473C2^3 | 128,1058 |
(C22×C4).474C23 = C42.161D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).474C2^3 | 128,1059 |
(C22×C4).475C23 = C42⋊14D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).475C2^3 | 128,1060 |
(C22×C4).476C23 = C23.211C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).476C2^3 | 128,1061 |
(C22×C4).477C23 = C42.33Q8 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).477C2^3 | 128,1062 |
(C22×C4).478C23 = C42⋊4Q8 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).478C2^3 | 128,1063 |
(C22×C4).479C23 = C23.214C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).479C2^3 | 128,1064 |
(C22×C4).480C23 = C23.215C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).480C2^3 | 128,1065 |
(C22×C4).481C23 = C24.203C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).481C2^3 | 128,1066 |
(C22×C4).482C23 = C24.204C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).482C2^3 | 128,1067 |
(C22×C4).483C23 = C23.218C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).483C2^3 | 128,1068 |
(C22×C4).484C23 = C24.205C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).484C2^3 | 128,1069 |
(C22×C4).485C23 = C23.257C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).485C2^3 | 128,1107 |
(C22×C4).486C23 = C24.225C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).486C2^3 | 128,1108 |
(C22×C4).487C23 = C23.259C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).487C2^3 | 128,1109 |
(C22×C4).488C23 = C24.227C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).488C2^3 | 128,1110 |
(C22×C4).489C23 = C23.261C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).489C2^3 | 128,1111 |
(C22×C4).490C23 = C23.262C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).490C2^3 | 128,1112 |
(C22×C4).491C23 = C23.263C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).491C2^3 | 128,1113 |
(C22×C4).492C23 = C23.264C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).492C2^3 | 128,1114 |
(C22×C4).493C23 = C24.230C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).493C2^3 | 128,1115 |
(C22×C4).494C23 = C2×C23.10D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).494C2^3 | 128,1118 |
(C22×C4).495C23 = C2×C23.11D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).495C2^3 | 128,1122 |
(C22×C4).496C23 = C42⋊15D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).496C2^3 | 128,1124 |
(C22×C4).497C23 = C2×C23.83C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).497C2^3 | 128,1126 |
(C22×C4).498C23 = C23.295C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).498C2^3 | 128,1127 |
(C22×C4).499C23 = C42.163D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).499C2^3 | 128,1130 |
(C22×C4).500C23 = C2×C23.84C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).500C2^3 | 128,1132 |
(C22×C4).501C23 = C23.301C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).501C2^3 | 128,1133 |
(C22×C4).502C23 = C42.34Q8 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).502C2^3 | 128,1134 |
(C22×C4).503C23 = C23.311C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).503C2^3 | 128,1143 |
(C22×C4).504C23 = C23.313C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).504C2^3 | 128,1145 |
(C22×C4).505C23 = C23.322C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).505C2^3 | 128,1154 |
(C22×C4).506C23 = C24.258C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).506C2^3 | 128,1157 |
(C22×C4).507C23 = C24.259C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).507C2^3 | 128,1158 |
(C22×C4).508C23 = C23.327C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).508C2^3 | 128,1159 |
(C22×C4).509C23 = C24.267C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).509C2^3 | 128,1171 |
(C22×C4).510C23 = C24.268C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).510C2^3 | 128,1173 |
(C22×C4).511C23 = C24.269C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).511C2^3 | 128,1175 |
(C22×C4).512C23 = C23.345C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).512C2^3 | 128,1177 |
(C22×C4).513C23 = C24.271C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).513C2^3 | 128,1179 |
(C22×C4).514C23 = C23.350C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).514C2^3 | 128,1182 |
(C22×C4).515C23 = C24.289C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).515C2^3 | 128,1202 |
(C22×C4).516C23 = C23.372C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).516C2^3 | 128,1204 |
(C22×C4).517C23 = C24.572C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).517C2^3 | 128,1205 |
(C22×C4).518C23 = C23.374C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).518C2^3 | 128,1206 |
(C22×C4).519C23 = C23.375C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).519C2^3 | 128,1207 |
(C22×C4).520C23 = C24.96D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).520C2^3 | 128,1215 |
(C22×C4).521C23 = C23.385C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).521C2^3 | 128,1217 |
(C22×C4).522C23 = C23.388C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).522C2^3 | 128,1220 |
(C22×C4).523C23 = C23.398C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).523C2^3 | 128,1230 |
(C22×C4).524C23 = C24.579C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).524C2^3 | 128,1235 |
(C22×C4).525C23 = C23.404C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).525C2^3 | 128,1236 |
(C22×C4).526C23 = C23.413C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).526C2^3 | 128,1245 |
(C22×C4).527C23 = C23.414C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).527C2^3 | 128,1246 |
(C22×C4).528C23 = C23.418C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).528C2^3 | 128,1250 |
(C22×C4).529C23 = C23.419C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).529C2^3 | 128,1251 |
(C22×C4).530C23 = C23.420C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).530C2^3 | 128,1252 |
(C22×C4).531C23 = C24.311C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).531C2^3 | 128,1253 |
(C22×C4).532C23 = C23.422C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).532C2^3 | 128,1254 |
(C22×C4).533C23 = C23.432C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).533C2^3 | 128,1264 |
(C22×C4).534C23 = C23.433C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).534C2^3 | 128,1265 |
(C22×C4).535C23 = C23.434C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).535C2^3 | 128,1266 |
(C22×C4).536C23 = C42⋊21D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).536C2^3 | 128,1276 |
(C22×C4).537C23 = C42.168D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).537C2^3 | 128,1277 |
(C22×C4).538C23 = C42.171D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).538C2^3 | 128,1280 |
(C22×C4).539C23 = C24.326C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).539C2^3 | 128,1285 |
(C22×C4).540C23 = C24.327C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).540C2^3 | 128,1286 |
(C22×C4).541C23 = C24.331C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).541C2^3 | 128,1291 |
(C22×C4).542C23 = C24.332C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).542C2^3 | 128,1292 |
(C22×C4).543C23 = C42.172D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).543C2^3 | 128,1294 |
(C22×C4).544C23 = C24.584C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).544C2^3 | 128,1301 |
(C22×C4).545C23 = C42.37Q8 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).545C2^3 | 128,1303 |
(C22×C4).546C23 = C23.479C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).546C2^3 | 128,1311 |
(C22×C4).547C23 = C23.485C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).547C2^3 | 128,1317 |
(C22×C4).548C23 = C24.346C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).548C2^3 | 128,1321 |
(C22×C4).549C23 = C23.490C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).549C2^3 | 128,1322 |
(C22×C4).550C23 = C23.491C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).550C2^3 | 128,1323 |
(C22×C4).551C23 = C42.182D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).551C2^3 | 128,1324 |
(C22×C4).552C23 = C42⋊23D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).552C2^3 | 128,1333 |
(C22×C4).553C23 = C24.355C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).553C2^3 | 128,1339 |
(C22×C4).554C23 = C23.508C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).554C2^3 | 128,1340 |
(C22×C4).555C23 = C42⋊25D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).555C2^3 | 128,1341 |
(C22×C4).556C23 = C24.393C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).556C2^3 | 128,1418 |
(C22×C4).557C23 = C24.395C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).557C2^3 | 128,1420 |
(C22×C4).558C23 = C23.593C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).558C2^3 | 128,1425 |
(C22×C4).559C23 = C23.595C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).559C2^3 | 128,1427 |
(C22×C4).560C23 = C23.617C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).560C2^3 | 128,1449 |
(C22×C4).561C23 = C23.622C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).561C2^3 | 128,1454 |
(C22×C4).562C23 = C23.635C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).562C2^3 | 128,1467 |
(C22×C4).563C23 = C23.636C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).563C2^3 | 128,1468 |
(C22×C4).564C23 = C24.426C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).564C2^3 | 128,1470 |
(C22×C4).565C23 = C24.427C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).565C2^3 | 128,1471 |
(C22×C4).566C23 = C23.641C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).566C2^3 | 128,1473 |
(C22×C4).567C23 = C24.430C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).567C2^3 | 128,1476 |
(C22×C4).568C23 = C23.645C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).568C2^3 | 128,1477 |
(C22×C4).569C23 = C23.647C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).569C2^3 | 128,1479 |
(C22×C4).570C23 = C23.649C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).570C2^3 | 128,1481 |
(C22×C4).571C23 = C24.435C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).571C2^3 | 128,1482 |
(C22×C4).572C23 = C23.651C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).572C2^3 | 128,1483 |
(C22×C4).573C23 = C23.652C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).573C2^3 | 128,1484 |
(C22×C4).574C23 = C24.437C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).574C2^3 | 128,1485 |
(C22×C4).575C23 = C23.654C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).575C2^3 | 128,1486 |
(C22×C4).576C23 = C23.656C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).576C2^3 | 128,1488 |
(C22×C4).577C23 = C24.438C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).577C2^3 | 128,1489 |
(C22×C4).578C23 = C23.658C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).578C2^3 | 128,1490 |
(C22×C4).579C23 = C23.659C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).579C2^3 | 128,1491 |
(C22×C4).580C23 = C23.660C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).580C2^3 | 128,1492 |
(C22×C4).581C23 = C24.440C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).581C2^3 | 128,1493 |
(C22×C4).582C23 = C23.662C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).582C2^3 | 128,1494 |
(C22×C4).583C23 = C23.664C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).583C2^3 | 128,1496 |
(C22×C4).584C23 = C24.443C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).584C2^3 | 128,1497 |
(C22×C4).585C23 = C23.666C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).585C2^3 | 128,1498 |
(C22×C4).586C23 = C23.667C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).586C2^3 | 128,1499 |
(C22×C4).587C23 = C23.669C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).587C2^3 | 128,1501 |
(C22×C4).588C23 = C23.671C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).588C2^3 | 128,1503 |
(C22×C4).589C23 = C23.672C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).589C2^3 | 128,1504 |
(C22×C4).590C23 = C23.673C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).590C2^3 | 128,1505 |
(C22×C4).591C23 = C23.675C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).591C2^3 | 128,1507 |
(C22×C4).592C23 = C23.677C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).592C2^3 | 128,1509 |
(C22×C4).593C23 = C23.678C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).593C2^3 | 128,1510 |
(C22×C4).594C23 = C23.679C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).594C2^3 | 128,1511 |
(C22×C4).595C23 = C23.681C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).595C2^3 | 128,1513 |
(C22×C4).596C23 = C23.682C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).596C2^3 | 128,1514 |
(C22×C4).597C23 = C23.683C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).597C2^3 | 128,1515 |
(C22×C4).598C23 = C23.685C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).598C2^3 | 128,1517 |
(C22×C4).599C23 = C23.686C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).599C2^3 | 128,1518 |
(C22×C4).600C23 = C23.687C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).600C2^3 | 128,1519 |
(C22×C4).601C23 = C23.689C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).601C2^3 | 128,1521 |
(C22×C4).602C23 = C23.692C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).602C2^3 | 128,1524 |
(C22×C4).603C23 = C23.693C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).603C2^3 | 128,1525 |
(C22×C4).604C23 = C23.694C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).604C2^3 | 128,1526 |
(C22×C4).605C23 = C23.695C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).605C2^3 | 128,1527 |
(C22×C4).606C23 = C23.696C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).606C2^3 | 128,1528 |
(C22×C4).607C23 = C23.697C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).607C2^3 | 128,1529 |
(C22×C4).608C23 = C23.698C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).608C2^3 | 128,1530 |
(C22×C4).609C23 = C23.700C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).609C2^3 | 128,1532 |
(C22×C4).610C23 = C23.701C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).610C2^3 | 128,1533 |
(C22×C4).611C23 = C23.703C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).611C2^3 | 128,1535 |
(C22×C4).612C23 = C23.706C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).612C2^3 | 128,1538 |
(C22×C4).613C23 = C23.707C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).613C2^3 | 128,1539 |
(C22×C4).614C23 = C23.708C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).614C2^3 | 128,1540 |
(C22×C4).615C23 = C23.710C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).615C2^3 | 128,1542 |
(C22×C4).616C23 = C23.7C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 16 | 4 | (C2^2xC4).616C2^3 | 128,1757 |
(C22×C4).617C23 = C22.14C25 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).617C2^3 | 128,2160 |
(C22×C4).618C23 = C2×C22.53C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).618C2^3 | 128,2211 |
(C22×C4).619C23 = C22.70C25 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).619C2^3 | 128,2213 |
(C22×C4).620C23 = C2×C22.SD16 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).620C2^3 | 128,230 |
(C22×C4).621C23 = C2×C23.31D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).621C2^3 | 128,231 |
(C22×C4).622C23 = C42.375D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).622C2^3 | 128,232 |
(C22×C4).623C23 = C24.53D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).623C2^3 | 128,233 |
(C22×C4).624C23 = C42.403D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).624C2^3 | 128,234 |
(C22×C4).625C23 = C42.404D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).625C2^3 | 128,235 |
(C22×C4).626C23 = C24.150D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 16 | | (C2^2xC4).626C2^3 | 128,236 |
(C22×C4).627C23 = C42.55D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).627C2^3 | 128,237 |
(C22×C4).628C23 = C42.56D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).628C2^3 | 128,238 |
(C22×C4).629C23 = C24.54D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).629C2^3 | 128,239 |
(C22×C4).630C23 = C24.55D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).630C2^3 | 128,240 |
(C22×C4).631C23 = C42.57D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).631C2^3 | 128,241 |
(C22×C4).632C23 = C24.56D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).632C2^3 | 128,242 |
(C22×C4).633C23 = C24.57D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).633C2^3 | 128,243 |
(C22×C4).634C23 = C42.58D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).634C2^3 | 128,244 |
(C22×C4).635C23 = C24.58D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).635C2^3 | 128,245 |
(C22×C4).636C23 = C42.59D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).636C2^3 | 128,246 |
(C22×C4).637C23 = C42.60D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).637C2^3 | 128,247 |
(C22×C4).638C23 = C24.59D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).638C2^3 | 128,248 |
(C22×C4).639C23 = C42.61D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).639C2^3 | 128,249 |
(C22×C4).640C23 = C42.62D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).640C2^3 | 128,250 |
(C22×C4).641C23 = C24.60D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).641C2^3 | 128,251 |
(C22×C4).642C23 = C24.61D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).642C2^3 | 128,252 |
(C22×C4).643C23 = C42.63D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).643C2^3 | 128,253 |
(C22×C4).644C23 = C2×C4.9C42 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).644C2^3 | 128,462 |
(C22×C4).645C23 = C2×C4.10C42 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).645C2^3 | 128,463 |
(C22×C4).646C23 = C2×C22.C42 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).646C2^3 | 128,473 |
(C22×C4).647C23 = C23.15C42 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).647C2^3 | 128,474 |
(C22×C4).648C23 = C2×M4(2)⋊4C4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).648C2^3 | 128,475 |
(C22×C4).649C23 = C8.16C42 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | 4 | (C2^2xC4).649C2^3 | 128,479 |
(C22×C4).650C23 = C4×C4.D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).650C2^3 | 128,487 |
(C22×C4).651C23 = C4×C4.10D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).651C2^3 | 128,488 |
(C22×C4).652C23 = C23.5C42 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | 4 | (C2^2xC4).652C2^3 | 128,489 |
(C22×C4).653C23 = C25.C4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 16 | | (C2^2xC4).653C2^3 | 128,515 |
(C22×C4).654C23 = C4.C22≀C2 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).654C2^3 | 128,516 |
(C22×C4).655C23 = (C23×C4).C4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).655C2^3 | 128,517 |
(C22×C4).656C23 = 2+ 1+4.2C4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | 4 | (C2^2xC4).656C2^3 | 128,523 |
(C22×C4).657C23 = 2+ 1+4⋊3C4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).657C2^3 | 128,524 |
(C22×C4).658C23 = 2- 1+4⋊2C4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).658C2^3 | 128,525 |
(C22×C4).659C23 = 2+ 1+4⋊4C4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | 4 | (C2^2xC4).659C2^3 | 128,526 |
(C22×C4).660C23 = C42.96D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).660C2^3 | 128,532 |
(C22×C4).661C23 = C42.97D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).661C2^3 | 128,533 |
(C22×C4).662C23 = (C2×D4).24Q8 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | 4 | (C2^2xC4).662C2^3 | 128,544 |
(C22×C4).663C23 = (C2×C8).103D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | 4 | (C2^2xC4).663C2^3 | 128,545 |
(C22×C4).664C23 = C8○D4⋊C4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | 4 | (C2^2xC4).664C2^3 | 128,546 |
(C22×C4).665C23 = C4○D4.4Q8 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).665C2^3 | 128,547 |
(C22×C4).666C23 = C4○D4.5Q8 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).666C2^3 | 128,548 |
(C22×C4).667C23 = (C22×C4).275D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).667C2^3 | 128,553 |
(C22×C4).668C23 = (C22×C4).276D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).668C2^3 | 128,554 |
(C22×C4).669C23 = (C2×C42)⋊C4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 16 | 4 | (C2^2xC4).669C2^3 | 128,559 |
(C22×C4).670C23 = C8.(C4⋊C4) | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | 4 | (C2^2xC4).670C2^3 | 128,565 |
(C22×C4).671C23 = C8⋊C4⋊17C4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 16 | 4 | (C2^2xC4).671C2^3 | 128,573 |
(C22×C4).672C23 = C24.21D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).672C2^3 | 128,588 |
(C22×C4).673C23 = C4.10D4⋊2C4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).673C2^3 | 128,589 |
(C22×C4).674C23 = M4(2).40D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | 4 | (C2^2xC4).674C2^3 | 128,590 |
(C22×C4).675C23 = C4≀C2⋊C4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).675C2^3 | 128,591 |
(C22×C4).676C23 = C42⋊9(C2×C4) | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).676C2^3 | 128,592 |
(C22×C4).677C23 = M4(2).41D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 16 | 4 | (C2^2xC4).677C2^3 | 128,593 |
(C22×C4).678C23 = (C2×D4).Q8 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | 4 | (C2^2xC4).678C2^3 | 128,600 |
(C22×C4).679C23 = M4(2).44D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | 4 | (C2^2xC4).679C2^3 | 128,613 |
(C22×C4).680C23 = C8.C22⋊C4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).680C2^3 | 128,614 |
(C22×C4).681C23 = C8⋊C22⋊C4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).681C2^3 | 128,615 |
(C22×C4).682C23 = M4(2)⋊19D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 16 | 4 | (C2^2xC4).682C2^3 | 128,616 |
(C22×C4).683C23 = C24.23D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).683C2^3 | 128,617 |
(C22×C4).684C23 = C4⋊Q8⋊15C4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).684C2^3 | 128,618 |
(C22×C4).685C23 = C24.24D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 16 | | (C2^2xC4).685C2^3 | 128,619 |
(C22×C4).686C23 = C4.4D4⋊13C4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).686C2^3 | 128,620 |
(C22×C4).687C23 = (C2×C8)⋊D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 16 | 4 | (C2^2xC4).687C2^3 | 128,623 |
(C22×C4).688C23 = M4(2)⋊20D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).688C2^3 | 128,632 |
(C22×C4).689C23 = M4(2).45D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).689C2^3 | 128,633 |
(C22×C4).690C23 = C42.426D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 16 | 4 | (C2^2xC4).690C2^3 | 128,638 |
(C22×C4).691C23 = M4(2).48D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).691C2^3 | 128,639 |
(C22×C4).692C23 = M4(2).49D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).692C2^3 | 128,640 |
(C22×C4).693C23 = C4.10D4⋊3C4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).693C2^3 | 128,662 |
(C22×C4).694C23 = C4.D4⋊3C4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).694C2^3 | 128,663 |
(C22×C4).695C23 = C42.427D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 16 | 4 | (C2^2xC4).695C2^3 | 128,664 |
(C22×C4).696C23 = M4(2).5Q8 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).696C2^3 | 128,683 |
(C22×C4).697C23 = M4(2).6Q8 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).697C2^3 | 128,684 |
(C22×C4).698C23 = M4(2).27D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | 4 | (C2^2xC4).698C2^3 | 128,685 |
(C22×C4).699C23 = M4(2)⋊12D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).699C2^3 | 128,697 |
(C22×C4).700C23 = C42.114D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).700C2^3 | 128,698 |
(C22×C4).701C23 = C42.115D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).701C2^3 | 128,699 |
(C22×C4).702C23 = M4(2).30D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | 4 | (C2^2xC4).702C2^3 | 128,708 |
(C22×C4).703C23 = M4(2).31D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).703C2^3 | 128,709 |
(C22×C4).704C23 = M4(2).32D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).704C2^3 | 128,710 |
(C22×C4).705C23 = M4(2).33D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).705C2^3 | 128,711 |
(C22×C4).706C23 = M4(2)⋊8Q8 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).706C2^3 | 128,729 |
(C22×C4).707C23 = C42.128D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).707C2^3 | 128,730 |
(C22×C4).708C23 = C42⋊9D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 16 | | (C2^2xC4).708C2^3 | 128,734 |
(C22×C4).709C23 = C42.129D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).709C2^3 | 128,735 |
(C22×C4).710C23 = C42⋊10D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).710C2^3 | 128,736 |
(C22×C4).711C23 = C42.130D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).711C2^3 | 128,737 |
(C22×C4).712C23 = M4(2)⋊D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).712C2^3 | 128,738 |
(C22×C4).713C23 = M4(2)⋊4D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).713C2^3 | 128,739 |
(C22×C4).714C23 = C42⋊2D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 16 | 4 | (C2^2xC4).714C2^3 | 128,742 |
(C22×C4).715C23 = (C2×C8).2D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | 4 | (C2^2xC4).715C2^3 | 128,749 |
(C22×C4).716C23 = M4(2).4D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).716C2^3 | 128,750 |
(C22×C4).717C23 = M4(2).5D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).717C2^3 | 128,751 |
(C22×C4).718C23 = M4(2).6D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).718C2^3 | 128,752 |
(C22×C4).719C23 = (C2×D4)⋊2Q8 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).719C2^3 | 128,759 |
(C22×C4).720C23 = (C2×Q8)⋊2Q8 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).720C2^3 | 128,760 |
(C22×C4).721C23 = C42.8D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 16 | 4 | (C2^2xC4).721C2^3 | 128,763 |
(C22×C4).722C23 = M4(2)⋊6D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).722C2^3 | 128,769 |
(C22×C4).723C23 = M4(2).7D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).723C2^3 | 128,770 |
(C22×C4).724C23 = C42⋊11D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).724C2^3 | 128,771 |
(C22×C4).725C23 = C42⋊12D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).725C2^3 | 128,772 |
(C22×C4).726C23 = C4⋊C4.96D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).726C2^3 | 128,777 |
(C22×C4).727C23 = C4⋊C4.97D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).727C2^3 | 128,778 |
(C22×C4).728C23 = C4⋊C4.98D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).728C2^3 | 128,779 |
(C22×C4).729C23 = C42.131D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 16 | 4 | (C2^2xC4).729C2^3 | 128,782 |
(C22×C4).730C23 = M4(2).10D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).730C2^3 | 128,783 |
(C22×C4).731C23 = M4(2).11D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).731C2^3 | 128,784 |
(C22×C4).732C23 = C22⋊C4.7D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | 4 | (C2^2xC4).732C2^3 | 128,785 |
(C22×C4).733C23 = M4(2)⋊Q8 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).733C2^3 | 128,792 |
(C22×C4).734C23 = C42⋊3Q8 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).734C2^3 | 128,793 |
(C22×C4).735C23 = M4(2).12D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).735C2^3 | 128,795 |
(C22×C4).736C23 = M4(2).13D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).736C2^3 | 128,796 |
(C22×C4).737C23 = (C2×C8).55D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).737C2^3 | 128,810 |
(C22×C4).738C23 = (C2×C8).165D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).738C2^3 | 128,811 |
(C22×C4).739C23 = C42.9D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | 4 | (C2^2xC4).739C2^3 | 128,812 |
(C22×C4).740C23 = M4(2).Q8 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).740C2^3 | 128,821 |
(C22×C4).741C23 = M4(2).2Q8 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).741C2^3 | 128,822 |
(C22×C4).742C23 = C24.11Q8 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 16 | 4 | (C2^2xC4).742C2^3 | 128,823 |
(C22×C4).743C23 = C42.10D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | 4 | (C2^2xC4).743C2^3 | 128,830 |
(C22×C4).744C23 = C42.32Q8 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 16 | 4 | (C2^2xC4).744C2^3 | 128,834 |
(C22×C4).745C23 = C22⋊C4.Q8 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | 4 | (C2^2xC4).745C2^3 | 128,835 |
(C22×C4).746C23 = C4×C22≀C2 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).746C2^3 | 128,1031 |
(C22×C4).747C23 = C4×C22.D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).747C2^3 | 128,1033 |
(C22×C4).748C23 = C4×C22⋊Q8 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).748C2^3 | 128,1034 |
(C22×C4).749C23 = C4×C4.4D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).749C2^3 | 128,1035 |
(C22×C4).750C23 = C4×C42⋊2C2 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).750C2^3 | 128,1036 |
(C22×C4).751C23 = C4×C42.C2 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).751C2^3 | 128,1037 |
(C22×C4).752C23 = C4×C4⋊Q8 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).752C2^3 | 128,1039 |
(C22×C4).753C23 = C23.224C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).753C2^3 | 128,1074 |
(C22×C4).754C23 = C23.225C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).754C2^3 | 128,1075 |
(C22×C4).755C23 = C23.226C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).755C2^3 | 128,1076 |
(C22×C4).756C23 = C23.227C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).756C2^3 | 128,1077 |
(C22×C4).757C23 = C24.208C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).757C2^3 | 128,1078 |
(C22×C4).758C23 = C23.229C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).758C2^3 | 128,1079 |
(C22×C4).759C23 = C23.235C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).759C2^3 | 128,1085 |
(C22×C4).760C23 = C23.237C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).760C2^3 | 128,1087 |
(C22×C4).761C23 = C23.238C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).761C2^3 | 128,1088 |
(C22×C4).762C23 = C23.240C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).762C2^3 | 128,1090 |
(C22×C4).763C23 = C23.241C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).763C2^3 | 128,1091 |
(C22×C4).764C23 = C24.558C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).764C2^3 | 128,1092 |
(C22×C4).765C23 = C24.215C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).765C2^3 | 128,1093 |
(C22×C4).766C23 = C23.244C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).766C2^3 | 128,1094 |
(C22×C4).767C23 = C24.217C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).767C2^3 | 128,1095 |
(C22×C4).768C23 = C23.247C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).768C2^3 | 128,1097 |
(C22×C4).769C23 = C23.250C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).769C2^3 | 128,1100 |
(C22×C4).770C23 = C23.251C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).770C2^3 | 128,1101 |
(C22×C4).771C23 = C23.252C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).771C2^3 | 128,1102 |
(C22×C4).772C23 = C23.253C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).772C2^3 | 128,1103 |
(C22×C4).773C23 = C24.221C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).773C2^3 | 128,1104 |
(C22×C4).774C23 = C23.255C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).774C2^3 | 128,1105 |
(C22×C4).775C23 = C2×C23⋊2D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).775C2^3 | 128,1116 |
(C22×C4).776C23 = C2×C23⋊Q8 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).776C2^3 | 128,1117 |
(C22×C4).777C23 = C2×C23.78C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).777C2^3 | 128,1119 |
(C22×C4).778C23 = C23.288C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).778C2^3 | 128,1120 |
(C22×C4).779C23 = C2×C23.Q8 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).779C2^3 | 128,1121 |
(C22×C4).780C23 = C2×C23.81C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).780C2^3 | 128,1123 |
(C22×C4).781C23 = C2×C23.4Q8 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).781C2^3 | 128,1125 |
(C22×C4).782C23 = C42.162D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).782C2^3 | 128,1128 |
(C22×C4).783C23 = C42⋊16D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).783C2^3 | 128,1129 |
(C22×C4).784C23 = C42⋊5Q8 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).784C2^3 | 128,1131 |
(C22×C4).785C23 = C24⋊7D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).785C2^3 | 128,1135 |
(C22×C4).786C23 = C23.304C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).786C2^3 | 128,1136 |
(C22×C4).787C23 = C24.243C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).787C2^3 | 128,1138 |
(C22×C4).788C23 = C24.244C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).788C2^3 | 128,1139 |
(C22×C4).789C23 = C23.308C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).789C2^3 | 128,1140 |
(C22×C4).790C23 = C23.309C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).790C2^3 | 128,1141 |
(C22×C4).791C23 = C24⋊8D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).791C2^3 | 128,1142 |
(C22×C4).792C23 = C23.318C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).792C2^3 | 128,1150 |
(C22×C4).793C23 = C23.323C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).793C2^3 | 128,1155 |
(C22×C4).794C23 = C23.324C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).794C2^3 | 128,1156 |
(C22×C4).795C23 = C23.328C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).795C2^3 | 128,1160 |
(C22×C4).796C23 = C23.329C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).796C2^3 | 128,1161 |
(C22×C4).797C23 = C24.262C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).797C2^3 | 128,1162 |
(C22×C4).798C23 = C24.263C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).798C2^3 | 128,1163 |
(C22×C4).799C23 = C24.264C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).799C2^3 | 128,1164 |
(C22×C4).800C23 = C23.333C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).800C2^3 | 128,1165 |
(C22×C4).801C23 = C23.334C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).801C2^3 | 128,1166 |
(C22×C4).802C23 = C24.568C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).802C2^3 | 128,1172 |
(C22×C4).803C23 = C23.346C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).803C2^3 | 128,1178 |
(C22×C4).804C23 = C23.348C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).804C2^3 | 128,1180 |
(C22×C4).805C23 = C23.349C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).805C2^3 | 128,1181 |
(C22×C4).806C23 = C23.351C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).806C2^3 | 128,1183 |
(C22×C4).807C23 = C23.352C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).807C2^3 | 128,1184 |
(C22×C4).808C23 = C23.353C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).808C2^3 | 128,1185 |
(C22×C4).809C23 = C23.354C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).809C2^3 | 128,1186 |
(C22×C4).810C23 = C24.276C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).810C2^3 | 128,1187 |
(C22×C4).811C23 = C23.356C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).811C2^3 | 128,1188 |
(C22×C4).812C23 = C23.359C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).812C2^3 | 128,1191 |
(C22×C4).813C23 = C23.360C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).813C2^3 | 128,1192 |
(C22×C4).814C23 = C24.282C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).814C2^3 | 128,1193 |
(C22×C4).815C23 = C23.362C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).815C2^3 | 128,1194 |
(C22×C4).816C23 = C24.283C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).816C2^3 | 128,1195 |
(C22×C4).817C23 = C23.364C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).817C2^3 | 128,1196 |
(C22×C4).818C23 = C24.285C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).818C2^3 | 128,1197 |
(C22×C4).819C23 = C24.286C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).819C2^3 | 128,1198 |
(C22×C4).820C23 = C23.367C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).820C2^3 | 128,1199 |
(C22×C4).821C23 = C24.290C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).821C2^3 | 128,1203 |
(C22×C4).822C23 = C24.293C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).822C2^3 | 128,1208 |
(C22×C4).823C23 = C23.377C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).823C2^3 | 128,1209 |
(C22×C4).824C23 = C24.295C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).824C2^3 | 128,1210 |
(C22×C4).825C23 = C23.379C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).825C2^3 | 128,1211 |
(C22×C4).826C23 = C23.391C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).826C2^3 | 128,1223 |
(C22×C4).827C23 = C23.392C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).827C2^3 | 128,1224 |
(C22×C4).828C23 = C23.406C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).828C2^3 | 128,1238 |
(C22×C4).829C23 = C23.407C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).829C2^3 | 128,1239 |
(C22×C4).830C23 = C23.408C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).830C2^3 | 128,1240 |
(C22×C4).831C23 = C23.409C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).831C2^3 | 128,1241 |
(C22×C4).832C23 = C23.439C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).832C2^3 | 128,1271 |
(C22×C4).833C23 = C42⋊19D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).833C2^3 | 128,1272 |
(C22×C4).834C23 = C42⋊20D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).834C2^3 | 128,1273 |
(C22×C4).835C23 = C42.167D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).835C2^3 | 128,1274 |
(C22×C4).836C23 = C23.443C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).836C2^3 | 128,1275 |
(C22×C4).837C23 = C42.169D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).837C2^3 | 128,1278 |
(C22×C4).838C23 = C23.449C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).838C2^3 | 128,1281 |
(C22×C4).839C23 = C42⋊6Q8 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).839C2^3 | 128,1282 |
(C22×C4).840C23 = C42⋊7Q8 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).840C2^3 | 128,1283 |
(C22×C4).841C23 = C42.174D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).841C2^3 | 128,1297 |
(C22×C4).842C23 = C42.175D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).842C2^3 | 128,1298 |
(C22×C4).843C23 = C42.176D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).843C2^3 | 128,1299 |
(C22×C4).844C23 = C24.338C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).844C2^3 | 128,1306 |
(C22×C4).845C23 = C23.483C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).845C2^3 | 128,1315 |
(C22×C4).846C23 = C42.181D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).846C2^3 | 128,1316 |
(C22×C4).847C23 = C23.486C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).847C2^3 | 128,1318 |
(C22×C4).848C23 = C42⋊24D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).848C2^3 | 128,1335 |
(C22×C4).849C23 = C42.184D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).849C2^3 | 128,1336 |
(C22×C4).850C23 = C42⋊9Q8 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).850C2^3 | 128,1344 |
(C22×C4).851C23 = C24⋊9D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).851C2^3 | 128,1345 |
(C22×C4).852C23 = C23.514C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).852C2^3 | 128,1346 |
(C22×C4).853C23 = C24.360C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).853C2^3 | 128,1347 |
(C22×C4).854C23 = C24.361C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).854C2^3 | 128,1348 |
(C22×C4).855C23 = C23.556C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).855C2^3 | 128,1388 |
(C22×C4).856C23 = C42⋊31D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).856C2^3 | 128,1389 |
(C22×C4).857C23 = C42.196D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).857C2^3 | 128,1390 |
(C22×C4).858C23 = C23.559C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).858C2^3 | 128,1391 |
(C22×C4).859C23 = C42⋊10Q8 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).859C2^3 | 128,1392 |
(C22×C4).860C23 = C23.571C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).860C2^3 | 128,1403 |
(C22×C4).861C23 = C23.572C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).861C2^3 | 128,1404 |
(C22×C4).862C23 = C23.573C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).862C2^3 | 128,1405 |
(C22×C4).863C23 = C23.574C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).863C2^3 | 128,1406 |
(C22×C4).864C23 = C24.384C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).864C2^3 | 128,1407 |
(C22×C4).865C23 = C23.576C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).865C2^3 | 128,1408 |
(C22×C4).866C23 = C24.385C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).866C2^3 | 128,1409 |
(C22×C4).867C23 = C23.580C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).867C2^3 | 128,1412 |
(C22×C4).868C23 = C23.581C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).868C2^3 | 128,1413 |
(C22×C4).869C23 = C23.583C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).869C2^3 | 128,1415 |
(C22×C4).870C23 = C24.394C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).870C2^3 | 128,1419 |
(C22×C4).871C23 = C23.589C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).871C2^3 | 128,1421 |
(C22×C4).872C23 = C23.592C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).872C2^3 | 128,1424 |
(C22×C4).873C23 = C24.401C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).873C2^3 | 128,1426 |
(C22×C4).874C23 = C24.403C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).874C2^3 | 128,1428 |
(C22×C4).875C23 = C24.405C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).875C2^3 | 128,1430 |
(C22×C4).876C23 = C24.406C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).876C2^3 | 128,1431 |
(C22×C4).877C23 = C23.600C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).877C2^3 | 128,1432 |
(C22×C4).878C23 = C24.407C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).878C2^3 | 128,1433 |
(C22×C4).879C23 = C24.408C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).879C2^3 | 128,1436 |
(C22×C4).880C23 = C23.605C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).880C2^3 | 128,1437 |
(C22×C4).881C23 = C23.606C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).881C2^3 | 128,1438 |
(C22×C4).882C23 = C23.607C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).882C2^3 | 128,1439 |
(C22×C4).883C23 = C23.618C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).883C2^3 | 128,1450 |
(C22×C4).884C23 = C23.620C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).884C2^3 | 128,1452 |
(C22×C4).885C23 = C23.621C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).885C2^3 | 128,1453 |
(C22×C4).886C23 = C24.418C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).886C2^3 | 128,1455 |
(C22×C4).887C23 = C23.624C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).887C2^3 | 128,1456 |
(C22×C4).888C23 = C23.626C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).888C2^3 | 128,1458 |
(C22×C4).889C23 = C23.627C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).889C2^3 | 128,1459 |
(C22×C4).890C23 = C23.632C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).890C2^3 | 128,1464 |
(C22×C4).891C23 = C23.633C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).891C2^3 | 128,1465 |
(C22×C4).892C23 = C23.634C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).892C2^3 | 128,1466 |
(C22×C4).893C23 = C23.711C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).893C2^3 | 128,1543 |
(C22×C4).894C23 = C2×C23.C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).894C2^3 | 128,1614 |
(C22×C4).895C23 = C22×C4.D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).895C2^3 | 128,1617 |
(C22×C4).896C23 = C22×C4.10D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).896C2^3 | 128,1618 |
(C22×C4).897C23 = C2×M4(2).8C22 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).897C2^3 | 128,1619 |
(C22×C4).898C23 = C2×C23.37D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).898C2^3 | 128,1625 |
(C22×C4).899C23 = C2×C23.38D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).899C2^3 | 128,1626 |
(C22×C4).900C23 = C2×C23.36D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).900C2^3 | 128,1627 |
(C22×C4).901C23 = C24.98D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).901C2^3 | 128,1628 |
(C22×C4).902C23 = 2+ 1+4⋊5C4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).902C2^3 | 128,1629 |
(C22×C4).903C23 = 2- 1+4⋊4C4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).903C2^3 | 128,1630 |
(C22×C4).904C23 = 2- 1+4⋊5C4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 16 | 4 | (C2^2xC4).904C2^3 | 128,1633 |
(C22×C4).905C23 = C2×M4(2)⋊C4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).905C2^3 | 128,1642 |
(C22×C4).906C23 = C24.100D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).906C2^3 | 128,1643 |
(C22×C4).907C23 = C4○D4.7Q8 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).907C2^3 | 128,1644 |
(C22×C4).908C23 = C4○D4.8Q8 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).908C2^3 | 128,1645 |
(C22×C4).909C23 = M4(2).29C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | 4 | (C2^2xC4).909C2^3 | 128,1648 |
(C22×C4).910C23 = C2×C42.7C22 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).910C2^3 | 128,1651 |
(C22×C4).911C23 = C42.259C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).911C2^3 | 128,1653 |
(C22×C4).912C23 = C42.260C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).912C2^3 | 128,1654 |
(C22×C4).913C23 = C42.261C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).913C2^3 | 128,1655 |
(C22×C4).914C23 = C42.678C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).914C2^3 | 128,1657 |
(C22×C4).915C23 = C2×C8⋊6D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).915C2^3 | 128,1660 |
(C22×C4).916C23 = C42.265C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).916C2^3 | 128,1662 |
(C22×C4).917C23 = C42.681C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).917C2^3 | 128,1663 |
(C22×C4).918C23 = C42.266C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).918C2^3 | 128,1664 |
(C22×C4).919C23 = M4(2)⋊22D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).919C2^3 | 128,1665 |
(C22×C4).920C23 = D4×M4(2) | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).920C2^3 | 128,1666 |
(C22×C4).921C23 = M4(2)⋊23D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).921C2^3 | 128,1667 |
(C22×C4).922C23 = C4×C8⋊C22 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).922C2^3 | 128,1676 |
(C22×C4).923C23 = C4×C8.C22 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).923C2^3 | 128,1677 |
(C22×C4).924C23 = C42.275C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).924C2^3 | 128,1678 |
(C22×C4).925C23 = C42.276C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).925C2^3 | 128,1679 |
(C22×C4).926C23 = C42.277C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).926C2^3 | 128,1680 |
(C22×C4).927C23 = C42.278C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).927C2^3 | 128,1681 |
(C22×C4).928C23 = C42.279C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).928C2^3 | 128,1682 |
(C22×C4).929C23 = C42.280C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).929C2^3 | 128,1683 |
(C22×C4).930C23 = C42.281C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).930C2^3 | 128,1684 |
(C22×C4).931C23 = C42.283C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | 4 | (C2^2xC4).931C2^3 | 128,1687 |
(C22×C4).932C23 = M4(2).51D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 16 | 4 | (C2^2xC4).932C2^3 | 128,1688 |
(C22×C4).933C23 = M4(2)○D8 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | 4 | (C2^2xC4).933C2^3 | 128,1689 |
(C22×C4).934C23 = C42.290C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).934C2^3 | 128,1697 |
(C22×C4).935C23 = C42.292C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).935C2^3 | 128,1699 |
(C22×C4).936C23 = C42.294C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).936C2^3 | 128,1701 |
(C22×C4).937C23 = D4⋊6M4(2) | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).937C2^3 | 128,1702 |
(C22×C4).938C23 = Q8⋊6M4(2) | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).938C2^3 | 128,1703 |
(C22×C4).939C23 = D4⋊7M4(2) | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).939C2^3 | 128,1706 |
(C22×C4).940C23 = C42.693C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).940C2^3 | 128,1707 |
(C22×C4).941C23 = C42.298C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).941C2^3 | 128,1709 |
(C22×C4).942C23 = C42.299C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).942C2^3 | 128,1710 |
(C22×C4).943C23 = C42.694C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).943C2^3 | 128,1711 |
(C22×C4).944C23 = C42.300C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).944C2^3 | 128,1712 |
(C22×C4).945C23 = C42.301C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).945C2^3 | 128,1713 |
(C22×C4).946C23 = C42.696C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).946C2^3 | 128,1717 |
(C22×C4).947C23 = C42.304C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).947C2^3 | 128,1718 |
(C22×C4).948C23 = C42.305C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).948C2^3 | 128,1719 |
(C22×C4).949C23 = Q8⋊7M4(2) | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).949C2^3 | 128,1723 |
(C22×C4).950C23 = C42.308C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).950C2^3 | 128,1725 |
(C22×C4).951C23 = C42.309C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).951C2^3 | 128,1726 |
(C22×C4).952C23 = C42.310C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).952C2^3 | 128,1727 |
(C22×C4).953C23 = C2×C22⋊D8 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).953C2^3 | 128,1728 |
(C22×C4).954C23 = C2×C22⋊SD16 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).954C2^3 | 128,1729 |
(C22×C4).955C23 = C2×Q8⋊D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).955C2^3 | 128,1730 |
(C22×C4).956C23 = C2×C22⋊Q16 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).956C2^3 | 128,1731 |
(C22×C4).957C23 = C2×D4⋊D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).957C2^3 | 128,1732 |
(C22×C4).958C23 = C2×D4.7D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).958C2^3 | 128,1733 |
(C22×C4).959C23 = C24.103D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).959C2^3 | 128,1734 |
(C22×C4).960C23 = C24.177D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 16 | | (C2^2xC4).960C2^3 | 128,1735 |
(C22×C4).961C23 = C24.178D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).961C2^3 | 128,1736 |
(C22×C4).962C23 = C24.104D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).962C2^3 | 128,1737 |
(C22×C4).963C23 = C24.105D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).963C2^3 | 128,1738 |
(C22×C4).964C23 = C24.106D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).964C2^3 | 128,1739 |
(C22×C4).965C23 = C2×D4⋊4D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 16 | | (C2^2xC4).965C2^3 | 128,1746 |
(C22×C4).966C23 = C2×D4.9D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).966C2^3 | 128,1747 |
(C22×C4).967C23 = C2×D4.8D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).967C2^3 | 128,1748 |
(C22×C4).968C23 = C2×D4.10D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).968C2^3 | 128,1749 |
(C22×C4).969C23 = C42.313C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 16 | 4 | (C2^2xC4).969C2^3 | 128,1750 |
(C22×C4).970C23 = C42.211D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).970C2^3 | 128,1768 |
(C22×C4).971C23 = C42.212D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).971C2^3 | 128,1769 |
(C22×C4).972C23 = C42.444D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).972C2^3 | 128,1770 |
(C22×C4).973C23 = C42.445D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).973C2^3 | 128,1771 |
(C22×C4).974C23 = C42.446D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).974C2^3 | 128,1772 |
(C22×C4).975C23 = C42.14C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).975C2^3 | 128,1773 |
(C22×C4).976C23 = C42.15C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).976C2^3 | 128,1774 |
(C22×C4).977C23 = C42.16C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).977C2^3 | 128,1775 |
(C22×C4).978C23 = C42.17C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).978C2^3 | 128,1776 |
(C22×C4).979C23 = C42.18C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).979C2^3 | 128,1777 |
(C22×C4).980C23 = C42.19C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).980C2^3 | 128,1778 |
(C22×C4).981C23 = M4(2)⋊14D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).981C2^3 | 128,1787 |
(C22×C4).982C23 = M4(2)⋊15D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).982C2^3 | 128,1788 |
(C22×C4).983C23 = (C2×C8)⋊11D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).983C2^3 | 128,1789 |
(C22×C4).984C23 = (C2×C8)⋊12D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).984C2^3 | 128,1790 |
(C22×C4).985C23 = C8.D4⋊C2 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).985C2^3 | 128,1791 |
(C22×C4).986C23 = (C2×C8)⋊13D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).986C2^3 | 128,1792 |
(C22×C4).987C23 = (C2×C8)⋊14D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).987C2^3 | 128,1793 |
(C22×C4).988C23 = M4(2)⋊16D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).988C2^3 | 128,1794 |
(C22×C4).989C23 = M4(2)⋊17D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).989C2^3 | 128,1795 |
(C22×C4).990C23 = C2×D4.3D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).990C2^3 | 128,1796 |
(C22×C4).991C23 = C2×D4.4D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).991C2^3 | 128,1797 |
(C22×C4).992C23 = C2×D4.5D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).992C2^3 | 128,1798 |
(C22×C4).993C23 = M4(2).10C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | 4 | (C2^2xC4).993C2^3 | 128,1799 |
(C22×C4).994C23 = C42.219D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).994C2^3 | 128,1809 |
(C22×C4).995C23 = C42.220D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).995C2^3 | 128,1810 |
(C22×C4).996C23 = C42.448D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).996C2^3 | 128,1811 |
(C22×C4).997C23 = C42.449D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).997C2^3 | 128,1812 |
(C22×C4).998C23 = C42.20C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).998C2^3 | 128,1813 |
(C22×C4).999C23 = C42.21C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).999C2^3 | 128,1814 |
(C22×C4).1000C23 = C42.22C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1000C2^3 | 128,1815 |
(C22×C4).1001C23 = C42.23C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1001C2^3 | 128,1816 |
(C22×C4).1002C23 = C2×C22.D8 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1002C2^3 | 128,1817 |
(C22×C4).1003C23 = C2×C23.47D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1003C2^3 | 128,1818 |
(C22×C4).1004C23 = C2×C23.46D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1004C2^3 | 128,1821 |
(C22×C4).1005C23 = C2×C23.48D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1005C2^3 | 128,1822 |
(C22×C4).1006C23 = C24.183D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1006C2^3 | 128,1824 |
(C22×C4).1007C23 = C24.116D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1007C2^3 | 128,1825 |
(C22×C4).1008C23 = C24.117D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1008C2^3 | 128,1826 |
(C22×C4).1009C23 = C24.118D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1009C2^3 | 128,1827 |
(C22×C4).1010C23 = (C2×D4).301D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1010C2^3 | 128,1828 |
(C22×C4).1011C23 = (C2×D4).302D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1011C2^3 | 128,1829 |
(C22×C4).1012C23 = (C2×D4).303D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1012C2^3 | 128,1830 |
(C22×C4).1013C23 = (C2×D4).304D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1013C2^3 | 128,1831 |
(C22×C4).1014C23 = C42.221D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1014C2^3 | 128,1832 |
(C22×C4).1015C23 = C42.222D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1015C2^3 | 128,1833 |
(C22×C4).1016C23 = C42.384D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1016C2^3 | 128,1834 |
(C22×C4).1017C23 = C42.223D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1017C2^3 | 128,1835 |
(C22×C4).1018C23 = C42.224D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1018C2^3 | 128,1836 |
(C22×C4).1019C23 = C42.225D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1019C2^3 | 128,1837 |
(C22×C4).1020C23 = C42.450D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1020C2^3 | 128,1838 |
(C22×C4).1021C23 = C42.451D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1021C2^3 | 128,1839 |
(C22×C4).1022C23 = C42.226D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1022C2^3 | 128,1840 |
(C22×C4).1023C23 = C42.227D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1023C2^3 | 128,1841 |
(C22×C4).1024C23 = C42.228D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1024C2^3 | 128,1842 |
(C22×C4).1025C23 = C42.229D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1025C2^3 | 128,1843 |
(C22×C4).1026C23 = C42.230D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1026C2^3 | 128,1844 |
(C22×C4).1027C23 = C42.231D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1027C2^3 | 128,1845 |
(C22×C4).1028C23 = C42.232D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1028C2^3 | 128,1846 |
(C22×C4).1029C23 = C42.233D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1029C2^3 | 128,1847 |
(C22×C4).1030C23 = C42.234D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1030C2^3 | 128,1848 |
(C22×C4).1031C23 = C42.235D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1031C2^3 | 128,1849 |
(C22×C4).1032C23 = C42.366C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1032C2^3 | 128,1868 |
(C22×C4).1033C23 = C42.367C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1033C2^3 | 128,1869 |
(C22×C4).1034C23 = C42.240D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1034C2^3 | 128,1870 |
(C22×C4).1035C23 = C42.241D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1035C2^3 | 128,1871 |
(C22×C4).1036C23 = C42.242D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1036C2^3 | 128,1872 |
(C22×C4).1037C23 = C42.243D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1037C2^3 | 128,1873 |
(C22×C4).1038C23 = C42.244D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1038C2^3 | 128,1874 |
(C22×C4).1039C23 = M4(2)⋊7D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1039C2^3 | 128,1883 |
(C22×C4).1040C23 = M4(2)⋊8D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1040C2^3 | 128,1884 |
(C22×C4).1041C23 = M4(2)⋊9D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1041C2^3 | 128,1885 |
(C22×C4).1042C23 = M4(2)⋊10D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1042C2^3 | 128,1886 |
(C22×C4).1043C23 = M4(2)⋊11D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1043C2^3 | 128,1887 |
(C22×C4).1044C23 = M4(2).20D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1044C2^3 | 128,1888 |
(C22×C4).1045C23 = M4(2)⋊3Q8 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1045C2^3 | 128,1895 |
(C22×C4).1046C23 = M4(2)⋊4Q8 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1046C2^3 | 128,1896 |
(C22×C4).1047C23 = M4(2)⋊5Q8 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1047C2^3 | 128,1897 |
(C22×C4).1048C23 = M4(2)⋊6Q8 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1048C2^3 | 128,1898 |
(C22×C4).1049C23 = C42.255D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1049C2^3 | 128,1903 |
(C22×C4).1050C23 = C42.256D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1050C2^3 | 128,1904 |
(C22×C4).1051C23 = C42.385C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1051C2^3 | 128,1905 |
(C22×C4).1052C23 = C42.386C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1052C2^3 | 128,1906 |
(C22×C4).1053C23 = C42.387C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1053C2^3 | 128,1907 |
(C22×C4).1054C23 = C42.388C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1054C2^3 | 128,1908 |
(C22×C4).1055C23 = C42.389C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1055C2^3 | 128,1909 |
(C22×C4).1056C23 = C42.390C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1056C2^3 | 128,1910 |
(C22×C4).1057C23 = C42.391C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1057C2^3 | 128,1911 |
(C22×C4).1058C23 = C42.259D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1058C2^3 | 128,1914 |
(C22×C4).1059C23 = C42.260D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1059C2^3 | 128,1915 |
(C22×C4).1060C23 = C42.261D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1060C2^3 | 128,1916 |
(C22×C4).1061C23 = C42.262D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1061C2^3 | 128,1917 |
(C22×C4).1062C23 = C23⋊3D8 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1062C2^3 | 128,1918 |
(C22×C4).1063C23 = C23⋊4SD16 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1063C2^3 | 128,1919 |
(C22×C4).1064C23 = C24.121D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1064C2^3 | 128,1920 |
(C22×C4).1065C23 = C23⋊3Q16 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1065C2^3 | 128,1921 |
(C22×C4).1066C23 = C24.123D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1066C2^3 | 128,1922 |
(C22×C4).1067C23 = C24.124D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1067C2^3 | 128,1923 |
(C22×C4).1068C23 = C24.125D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1068C2^3 | 128,1924 |
(C22×C4).1069C23 = C24.126D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1069C2^3 | 128,1925 |
(C22×C4).1070C23 = C24.127D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1070C2^3 | 128,1926 |
(C22×C4).1071C23 = C24.128D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1071C2^3 | 128,1927 |
(C22×C4).1072C23 = C24.129D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1072C2^3 | 128,1928 |
(C22×C4).1073C23 = C24.130D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1073C2^3 | 128,1929 |
(C22×C4).1074C23 = C42.263D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1074C2^3 | 128,1937 |
(C22×C4).1075C23 = C42.264D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1075C2^3 | 128,1938 |
(C22×C4).1076C23 = C42.265D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1076C2^3 | 128,1939 |
(C22×C4).1077C23 = C42.266D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1077C2^3 | 128,1940 |
(C22×C4).1078C23 = C42.267D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1078C2^3 | 128,1941 |
(C22×C4).1079C23 = C42.268D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1079C2^3 | 128,1942 |
(C22×C4).1080C23 = C42.269D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1080C2^3 | 128,1943 |
(C22×C4).1081C23 = C42.270D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1081C2^3 | 128,1944 |
(C22×C4).1082C23 = C42.271D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1082C2^3 | 128,1945 |
(C22×C4).1083C23 = C42.272D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1083C2^3 | 128,1946 |
(C22×C4).1084C23 = C42.273D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1084C2^3 | 128,1947 |
(C22×C4).1085C23 = C42.274D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1085C2^3 | 128,1948 |
(C22×C4).1086C23 = C42.275D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1086C2^3 | 128,1949 |
(C22×C4).1087C23 = C42.276D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1087C2^3 | 128,1950 |
(C22×C4).1088C23 = C42.277D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1088C2^3 | 128,1951 |
(C22×C4).1089C23 = C42.278D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1089C2^3 | 128,1958 |
(C22×C4).1090C23 = C42.279D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1090C2^3 | 128,1959 |
(C22×C4).1091C23 = C42.280D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1091C2^3 | 128,1960 |
(C22×C4).1092C23 = C42.281D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1092C2^3 | 128,1961 |
(C22×C4).1093C23 = C42.282D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1093C2^3 | 128,1962 |
(C22×C4).1094C23 = C42.283D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1094C2^3 | 128,1963 |
(C22×C4).1095C23 = C42.284D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1095C2^3 | 128,1964 |
(C22×C4).1096C23 = C42.285D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1096C2^3 | 128,1965 |
(C22×C4).1097C23 = C42.286D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1097C2^3 | 128,1966 |
(C22×C4).1098C23 = C42.287D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1098C2^3 | 128,1967 |
(C22×C4).1099C23 = C42.288D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1099C2^3 | 128,1968 |
(C22×C4).1100C23 = C42.289D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1100C2^3 | 128,1969 |
(C22×C4).1101C23 = C42.290D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1101C2^3 | 128,1970 |
(C22×C4).1102C23 = C42.291D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1102C2^3 | 128,1971 |
(C22×C4).1103C23 = C42.292D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1103C2^3 | 128,1972 |
(C22×C4).1104C23 = C42.299D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1104C2^3 | 128,1983 |
(C22×C4).1105C23 = C42.300D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1105C2^3 | 128,1984 |
(C22×C4).1106C23 = C42.301D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1106C2^3 | 128,1985 |
(C22×C4).1107C23 = C42.302D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1107C2^3 | 128,1986 |
(C22×C4).1108C23 = C42.303D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1108C2^3 | 128,1987 |
(C22×C4).1109C23 = C42.304D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1109C2^3 | 128,1988 |
(C22×C4).1110C23 = C4.2- 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1110C2^3 | 128,1989 |
(C22×C4).1111C23 = C42.25C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1111C2^3 | 128,1990 |
(C22×C4).1112C23 = C42.26C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1112C2^3 | 128,1991 |
(C22×C4).1113C23 = C42.27C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1113C2^3 | 128,1992 |
(C22×C4).1114C23 = C42.28C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1114C2^3 | 128,1993 |
(C22×C4).1115C23 = C42.29C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1115C2^3 | 128,1994 |
(C22×C4).1116C23 = C42.30C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1116C2^3 | 128,1995 |
(C22×C4).1117C23 = D8⋊10D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1117C2^3 | 128,1999 |
(C22×C4).1118C23 = SD16⋊7D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1118C2^3 | 128,2000 |
(C22×C4).1119C23 = SD16⋊8D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1119C2^3 | 128,2001 |
(C22×C4).1120C23 = Q16⋊10D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1120C2^3 | 128,2003 |
(C22×C4).1121C23 = D4×D8 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1121C2^3 | 128,2011 |
(C22×C4).1122C23 = D8⋊12D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1122C2^3 | 128,2012 |
(C22×C4).1123C23 = D4×SD16 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1123C2^3 | 128,2013 |
(C22×C4).1124C23 = SD16⋊10D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1124C2^3 | 128,2014 |
(C22×C4).1125C23 = D8⋊13D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1125C2^3 | 128,2015 |
(C22×C4).1126C23 = SD16⋊11D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1126C2^3 | 128,2016 |
(C22×C4).1127C23 = Q16⋊12D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1127C2^3 | 128,2017 |
(C22×C4).1128C23 = D4×Q16 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1128C2^3 | 128,2018 |
(C22×C4).1129C23 = Q16⋊13D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1129C2^3 | 128,2019 |
(C22×C4).1130C23 = D4⋊4D8 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1130C2^3 | 128,2026 |
(C22×C4).1131C23 = D4⋊7SD16 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1131C2^3 | 128,2027 |
(C22×C4).1132C23 = C42.461C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1132C2^3 | 128,2028 |
(C22×C4).1133C23 = C42.462C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1133C2^3 | 128,2029 |
(C22×C4).1134C23 = D4⋊8SD16 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1134C2^3 | 128,2030 |
(C22×C4).1135C23 = D4⋊5Q16 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1135C2^3 | 128,2031 |
(C22×C4).1136C23 = C42.465C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1136C2^3 | 128,2032 |
(C22×C4).1137C23 = C42.466C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1137C2^3 | 128,2033 |
(C22×C4).1138C23 = C42.467C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1138C2^3 | 128,2034 |
(C22×C4).1139C23 = C42.468C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1139C2^3 | 128,2035 |
(C22×C4).1140C23 = C42.469C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1140C2^3 | 128,2036 |
(C22×C4).1141C23 = C42.470C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1141C2^3 | 128,2037 |
(C22×C4).1142C23 = C42.41C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1142C2^3 | 128,2038 |
(C22×C4).1143C23 = C42.42C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1143C2^3 | 128,2039 |
(C22×C4).1144C23 = C42.43C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1144C2^3 | 128,2040 |
(C22×C4).1145C23 = C42.44C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1145C2^3 | 128,2041 |
(C22×C4).1146C23 = C42.45C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1146C2^3 | 128,2042 |
(C22×C4).1147C23 = C42.46C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1147C2^3 | 128,2043 |
(C22×C4).1148C23 = C42.47C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1148C2^3 | 128,2044 |
(C22×C4).1149C23 = C42.48C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1149C2^3 | 128,2045 |
(C22×C4).1150C23 = C42.49C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1150C2^3 | 128,2046 |
(C22×C4).1151C23 = C42.50C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1151C2^3 | 128,2047 |
(C22×C4).1152C23 = C42.51C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1152C2^3 | 128,2048 |
(C22×C4).1153C23 = C42.52C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1153C2^3 | 128,2049 |
(C22×C4).1154C23 = C42.53C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1154C2^3 | 128,2050 |
(C22×C4).1155C23 = C42.54C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1155C2^3 | 128,2051 |
(C22×C4).1156C23 = C42.55C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1156C2^3 | 128,2052 |
(C22×C4).1157C23 = C42.56C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1157C2^3 | 128,2053 |
(C22×C4).1158C23 = D4⋊5D8 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1158C2^3 | 128,2066 |
(C22×C4).1159C23 = D4⋊9SD16 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1159C2^3 | 128,2067 |
(C22×C4).1160C23 = C42.485C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1160C2^3 | 128,2068 |
(C22×C4).1161C23 = C42.486C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1161C2^3 | 128,2069 |
(C22×C4).1162C23 = D4⋊6Q16 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1162C2^3 | 128,2070 |
(C22×C4).1163C23 = C42.488C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1163C2^3 | 128,2071 |
(C22×C4).1164C23 = C42.489C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1164C2^3 | 128,2072 |
(C22×C4).1165C23 = C42.490C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1165C2^3 | 128,2073 |
(C22×C4).1166C23 = C42.491C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1166C2^3 | 128,2074 |
(C22×C4).1167C23 = C42.61C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1167C2^3 | 128,2079 |
(C22×C4).1168C23 = C42.62C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1168C2^3 | 128,2080 |
(C22×C4).1169C23 = C42.63C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1169C2^3 | 128,2081 |
(C22×C4).1170C23 = C42.64C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1170C2^3 | 128,2082 |
(C22×C4).1171C23 = C22×C22⋊Q8 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1171C2^3 | 128,2165 |
(C22×C4).1172C23 = C22×C4.4D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1172C2^3 | 128,2168 |
(C22×C4).1173C23 = C22×C42.C2 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1173C2^3 | 128,2169 |
(C22×C4).1174C23 = C22×C42⋊2C2 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1174C2^3 | 128,2170 |
(C22×C4).1175C23 = C2×C23.36C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1175C2^3 | 128,2171 |
(C22×C4).1176C23 = C2×C22.26C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1176C2^3 | 128,2174 |
(C22×C4).1177C23 = C2×C23.37C23 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1177C2^3 | 128,2175 |
(C22×C4).1178C23 = C2×C22.31C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1178C2^3 | 128,2180 |
(C22×C4).1179C23 = C22.38C25 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1179C2^3 | 128,2181 |
(C22×C4).1180C23 = C2×C22.33C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1180C2^3 | 128,2183 |
(C22×C4).1181C23 = C2×C22.34C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1181C2^3 | 128,2184 |
(C22×C4).1182C23 = C2×C22.35C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1182C2^3 | 128,2185 |
(C22×C4).1183C23 = C2×C22.36C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1183C2^3 | 128,2186 |
(C22×C4).1184C23 = C22.44C25 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1184C2^3 | 128,2187 |
(C22×C4).1185C23 = C2×C23⋊2Q8 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1185C2^3 | 128,2188 |
(C22×C4).1186C23 = C22.47C25 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1186C2^3 | 128,2190 |
(C22×C4).1187C23 = C22.48C25 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1187C2^3 | 128,2191 |
(C22×C4).1188C23 = C22.49C25 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1188C2^3 | 128,2192 |
(C22×C4).1189C23 = C22.50C25 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1189C2^3 | 128,2193 |
(C22×C4).1190C23 = C2×D4⋊6D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1190C2^3 | 128,2196 |
(C22×C4).1191C23 = C2×Q8⋊5D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1191C2^3 | 128,2197 |
(C22×C4).1192C23 = C2×D4×Q8 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1192C2^3 | 128,2198 |
(C22×C4).1193C23 = C2×Q8⋊6D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1193C2^3 | 128,2199 |
(C22×C4).1194C23 = D4×C4○D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1194C2^3 | 128,2200 |
(C22×C4).1195C23 = C2×C22.46C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1195C2^3 | 128,2202 |
(C22×C4).1196C23 = C2×C22.47C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1196C2^3 | 128,2203 |
(C22×C4).1197C23 = C2×D4⋊3Q8 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1197C2^3 | 128,2204 |
(C22×C4).1198C23 = C2×C22.49C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1198C2^3 | 128,2205 |
(C22×C4).1199C23 = C2×C22.50C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1199C2^3 | 128,2206 |
(C22×C4).1200C23 = C22.64C25 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1200C2^3 | 128,2207 |
(C22×C4).1201C23 = C2×Q8⋊3Q8 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1201C2^3 | 128,2208 |
(C22×C4).1202C23 = Q8×C4○D4 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1202C2^3 | 128,2210 |
(C22×C4).1203C23 = C22.69C25 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1203C2^3 | 128,2212 |
(C22×C4).1204C23 = C22.71C25 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1204C2^3 | 128,2214 |
(C22×C4).1205C23 = C22.72C25 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1205C2^3 | 128,2215 |
(C22×C4).1206C23 = C22.75C25 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1206C2^3 | 128,2218 |
(C22×C4).1207C23 = C22.76C25 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1207C2^3 | 128,2219 |
(C22×C4).1208C23 = C22.87C25 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1208C2^3 | 128,2230 |
(C22×C4).1209C23 = C22.91C25 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1209C2^3 | 128,2234 |
(C22×C4).1210C23 = C22.98C25 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1210C2^3 | 128,2241 |
(C22×C4).1211C23 = C22.107C25 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1211C2^3 | 128,2250 |
(C22×C4).1212C23 = C23.146C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1212C2^3 | 128,2255 |
(C22×C4).1213C23 = C2×C24⋊C22 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1213C2^3 | 128,2258 |
(C22×C4).1214C23 = C2×C22.56C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1214C2^3 | 128,2259 |
(C22×C4).1215C23 = C2×C22.57C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1215C2^3 | 128,2260 |
(C22×C4).1216C23 = C22.118C25 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1216C2^3 | 128,2261 |
(C22×C4).1217C23 = C2×C22.58C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1217C2^3 | 128,2262 |
(C22×C4).1218C23 = C22.120C25 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1218C2^3 | 128,2263 |
(C22×C4).1219C23 = C22.145C25 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1219C2^3 | 128,2288 |
(C22×C4).1220C23 = C2×Q8○M4(2) | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1220C2^3 | 128,2304 |
(C22×C4).1221C23 = C4.22C25 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | 4 | (C2^2xC4).1221C2^3 | 128,2305 |
(C22×C4).1222C23 = C22×C8⋊C22 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1222C2^3 | 128,2310 |
(C22×C4).1223C23 = C22×C8.C22 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1223C2^3 | 128,2311 |
(C22×C4).1224C23 = C2×D8⋊C22 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1224C2^3 | 128,2312 |
(C22×C4).1225C23 = C2×D4○D8 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1225C2^3 | 128,2313 |
(C22×C4).1226C23 = C2×D4○SD16 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1226C2^3 | 128,2314 |
(C22×C4).1227C23 = C2×Q8○D8 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1227C2^3 | 128,2315 |
(C22×C4).1228C23 = C8.C24 | φ: C23/C2 → C22 ⊆ Aut C22×C4 | 32 | 4 | (C2^2xC4).1228C2^3 | 128,2316 |
(C22×C4).1229C23 = C22×C2.C42 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1229C2^3 | 128,998 |
(C22×C4).1230C23 = C2×C42⋊4C4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1230C2^3 | 128,999 |
(C22×C4).1231C23 = C23⋊C42 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1231C2^3 | 128,1005 |
(C22×C4).1232C23 = C24.524C23 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1232C2^3 | 128,1006 |
(C22×C4).1233C23 = D4⋊4C42 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1233C2^3 | 128,1007 |
(C22×C4).1234C23 = Q8⋊4C42 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1234C2^3 | 128,1008 |
(C22×C4).1235C23 = C2×C23.63C23 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1235C2^3 | 128,1020 |
(C22×C4).1236C23 = C2×C24.C22 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1236C2^3 | 128,1021 |
(C22×C4).1237C23 = C42⋊42D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1237C2^3 | 128,1022 |
(C22×C4).1238C23 = C43⋊9C2 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1238C2^3 | 128,1025 |
(C22×C4).1239C23 = C42⋊14Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1239C2^3 | 128,1027 |
(C22×C4).1240C23 = C43⋊2C2 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1240C2^3 | 128,1030 |
(C22×C4).1241C23 = D4×C22⋊C4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1241C2^3 | 128,1070 |
(C22×C4).1242C23 = C24.549C23 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1242C2^3 | 128,1071 |
(C22×C4).1243C23 = Q8×C22⋊C4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1243C2^3 | 128,1072 |
(C22×C4).1244C23 = C23.223C24 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1244C2^3 | 128,1073 |
(C22×C4).1245C23 = D4×C4⋊C4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1245C2^3 | 128,1080 |
(C22×C4).1246C23 = C23.231C24 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1246C2^3 | 128,1081 |
(C22×C4).1247C23 = Q8×C4⋊C4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1247C2^3 | 128,1082 |
(C22×C4).1248C23 = C23.233C24 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1248C2^3 | 128,1083 |
(C22×C4).1249C23 = C23.234C24 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1249C2^3 | 128,1084 |
(C22×C4).1250C23 = C23.236C24 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1250C2^3 | 128,1086 |
(C22×C4).1251C23 = C24.212C23 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1251C2^3 | 128,1089 |
(C22×C4).1252C23 = C24.218C23 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1252C2^3 | 128,1096 |
(C22×C4).1253C23 = C24.219C23 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1253C2^3 | 128,1098 |
(C22×C4).1254C23 = C24.220C23 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1254C2^3 | 128,1099 |
(C22×C4).1255C23 = C24.223C23 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1255C2^3 | 128,1106 |
(C22×C4).1256C23 = C24.313C23 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1256C2^3 | 128,1255 |
(C22×C4).1257C23 = C23.428C24 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1257C2^3 | 128,1260 |
(C22×C4).1258C23 = C23.429C24 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1258C2^3 | 128,1261 |
(C22×C4).1259C23 = C23.455C24 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1259C2^3 | 128,1287 |
(C22×C4).1260C23 = C23.456C24 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1260C2^3 | 128,1288 |
(C22×C4).1261C23 = C23.457C24 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1261C2^3 | 128,1289 |
(C22×C4).1262C23 = C42⋊26D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1262C2^3 | 128,1342 |
(C22×C4).1263C23 = C42⋊43D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1263C2^3 | 128,1584 |
(C22×C4).1264C23 = C23.753C24 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1264C2^3 | 128,1585 |
(C22×C4).1265C23 = C43⋊12C2 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1265C2^3 | 128,1590 |
(C22×C4).1266C23 = C43⋊13C2 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1266C2^3 | 128,1592 |
(C22×C4).1267C23 = C43⋊4C2 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1267C2^3 | 128,1597 |
(C22×C4).1268C23 = C43⋊5C2 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1268C2^3 | 128,1598 |
(C22×C4).1269C23 = C22×C22⋊C8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1269C2^3 | 128,1608 |
(C22×C4).1270C23 = C2×C42.12C4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1270C2^3 | 128,1649 |
(C22×C4).1271C23 = C2×C42.6C4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1271C2^3 | 128,1650 |
(C22×C4).1272C23 = C42.677C23 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1272C2^3 | 128,1652 |
(C22×C4).1273C23 = C42.262C23 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1273C2^3 | 128,1656 |
(C22×C4).1274C23 = D4×C2×C8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1274C2^3 | 128,1658 |
(C22×C4).1275C23 = C2×C8⋊9D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1275C2^3 | 128,1659 |
(C22×C4).1276C23 = C42.264C23 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1276C2^3 | 128,1661 |
(C22×C4).1277C23 = C8×C4○D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1277C2^3 | 128,1696 |
(C22×C4).1278C23 = C42.291C23 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1278C2^3 | 128,1698 |
(C22×C4).1279C23 = C42.293C23 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1279C2^3 | 128,1700 |
(C22×C4).1280C23 = C42.691C23 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1280C2^3 | 128,1704 |
(C22×C4).1281C23 = C23⋊3M4(2) | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1281C2^3 | 128,1705 |
(C22×C4).1282C23 = C42.297C23 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1282C2^3 | 128,1708 |
(C22×C4).1283C23 = C42.695C23 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1283C2^3 | 128,1714 |
(C22×C4).1284C23 = C42.302C23 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1284C2^3 | 128,1715 |
(C22×C4).1285C23 = Q8.4M4(2) | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1285C2^3 | 128,1716 |
(C22×C4).1286C23 = C42.697C23 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1286C2^3 | 128,1720 |
(C22×C4).1287C23 = C42.698C23 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1287C2^3 | 128,1721 |
(C22×C4).1288C23 = D4⋊8M4(2) | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1288C2^3 | 128,1722 |
(C22×C4).1289C23 = C42.307C23 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1289C2^3 | 128,1724 |
(C22×C4).1290C23 = C23×C4⋊C4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1290C2^3 | 128,2152 |
(C22×C4).1291C23 = C22×C42⋊C2 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1291C2^3 | 128,2153 |
(C22×C4).1292C23 = C2×C4×C4○D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1292C2^3 | 128,2156 |
(C22×C4).1293C23 = C2×C23.32C23 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1293C2^3 | 128,2158 |
(C22×C4).1294C23 = C2×C23.33C23 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1294C2^3 | 128,2159 |
(C22×C4).1295C23 = C4×2+ 1+4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1295C2^3 | 128,2161 |
(C22×C4).1296C23 = C4×2- 1+4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1296C2^3 | 128,2162 |
(C22×C4).1297C23 = C22.33C25 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1297C2^3 | 128,2176 |
(C22×C4).1298C23 = C2×C42⋊6C4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1298C2^3 | 128,464 |
(C22×C4).1299C23 = C24.63D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1299C2^3 | 128,465 |
(C22×C4).1300C23 = C2×C22.4Q16 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1300C2^3 | 128,466 |
(C22×C4).1301C23 = C24.132D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1301C2^3 | 128,467 |
(C22×C4).1302C23 = C24.152D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1302C2^3 | 128,468 |
(C22×C4).1303C23 = C2×C4.C42 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1303C2^3 | 128,469 |
(C22×C4).1304C23 = C24.7Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1304C2^3 | 128,470 |
(C22×C4).1305C23 = C4×C4≀C2 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1305C2^3 | 128,490 |
(C22×C4).1306C23 = D4.C42 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1306C2^3 | 128,491 |
(C22×C4).1307C23 = C4×D4⋊C4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1307C2^3 | 128,492 |
(C22×C4).1308C23 = C4×Q8⋊C4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1308C2^3 | 128,493 |
(C22×C4).1309C23 = D4⋊C42 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1309C2^3 | 128,494 |
(C22×C4).1310C23 = Q8⋊C42 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1310C2^3 | 128,495 |
(C22×C4).1311C23 = Q8.C42 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1311C2^3 | 128,496 |
(C22×C4).1312C23 = D4.3C42 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1312C2^3 | 128,497 |
(C22×C4).1313C23 = C8.14C42 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1313C2^3 | 128,504 |
(C22×C4).1314C23 = C8.5C42 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1314C2^3 | 128,505 |
(C22×C4).1315C23 = C4×C4.Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1315C2^3 | 128,506 |
(C22×C4).1316C23 = C4×C2.D8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1316C2^3 | 128,507 |
(C22×C4).1317C23 = C8⋊C42 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1317C2^3 | 128,508 |
(C22×C4).1318C23 = C4×C8.C4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1318C2^3 | 128,509 |
(C22×C4).1319C23 = C8.6C42 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1319C2^3 | 128,510 |
(C22×C4).1320C23 = C23.35D8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1320C2^3 | 128,518 |
(C22×C4).1321C23 = C24.155D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1321C2^3 | 128,519 |
(C22×C4).1322C23 = C24.65D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1322C2^3 | 128,520 |
(C22×C4).1323C23 = C24.66D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1323C2^3 | 128,521 |
(C22×C4).1324C23 = C42.98D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1324C2^3 | 128,534 |
(C22×C4).1325C23 = C42.99D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1325C2^3 | 128,535 |
(C22×C4).1326C23 = C42.100D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1326C2^3 | 128,536 |
(C22×C4).1327C23 = C42.101D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1327C2^3 | 128,537 |
(C22×C4).1328C23 = C42.102D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1328C2^3 | 128,538 |
(C22×C4).1329C23 = C24.133D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1329C2^3 | 128,539 |
(C22×C4).1330C23 = C23.22D8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1330C2^3 | 128,540 |
(C22×C4).1331C23 = C24.67D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1331C2^3 | 128,541 |
(C22×C4).1332C23 = C24.19Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1332C2^3 | 128,542 |
(C22×C4).1333C23 = C24.9Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1333C2^3 | 128,543 |
(C22×C4).1334C23 = C23.36D8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1334C2^3 | 128,555 |
(C22×C4).1335C23 = C24.157D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1335C2^3 | 128,556 |
(C22×C4).1336C23 = C24.69D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1336C2^3 | 128,557 |
(C22×C4).1337C23 = C24.70D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1337C2^3 | 128,558 |
(C22×C4).1338C23 = C42.55Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1338C2^3 | 128,566 |
(C22×C4).1339C23 = C42.56Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1339C2^3 | 128,567 |
(C22×C4).1340C23 = C42.24Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1340C2^3 | 128,568 |
(C22×C4).1341C23 = C42.322D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1341C2^3 | 128,569 |
(C22×C4).1342C23 = C42.104D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1342C2^3 | 128,570 |
(C22×C4).1343C23 = C42.58Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1343C2^3 | 128,576 |
(C22×C4).1344C23 = C42.59Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1344C2^3 | 128,577 |
(C22×C4).1345C23 = C42.60Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1345C2^3 | 128,578 |
(C22×C4).1346C23 = C42.26Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1346C2^3 | 128,579 |
(C22×C4).1347C23 = C42.324D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1347C2^3 | 128,580 |
(C22×C4).1348C23 = C42.106D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1348C2^3 | 128,581 |
(C22×C4).1349C23 = C23.37D8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1349C2^3 | 128,584 |
(C22×C4).1350C23 = C24.159D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1350C2^3 | 128,585 |
(C22×C4).1351C23 = C24.71D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1351C2^3 | 128,586 |
(C22×C4).1352C23 = C24.10Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1352C2^3 | 128,587 |
(C22×C4).1353C23 = C2.(C4×D8) | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1353C2^3 | 128,594 |
(C22×C4).1354C23 = Q8⋊(C4⋊C4) | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1354C2^3 | 128,595 |
(C22×C4).1355C23 = D4⋊(C4⋊C4) | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1355C2^3 | 128,596 |
(C22×C4).1356C23 = Q8⋊C4⋊C4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1356C2^3 | 128,597 |
(C22×C4).1357C23 = M4(2).42D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1357C2^3 | 128,598 |
(C22×C4).1358C23 = C24.72D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1358C2^3 | 128,603 |
(C22×C4).1359C23 = C24.160D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1359C2^3 | 128,604 |
(C22×C4).1360C23 = C24.73D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1360C2^3 | 128,605 |
(C22×C4).1361C23 = C23.38D8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1361C2^3 | 128,606 |
(C22×C4).1362C23 = C24.74D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1362C2^3 | 128,607 |
(C22×C4).1363C23 = M4(2).43D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1363C2^3 | 128,608 |
(C22×C4).1364C23 = (C2×SD16)⋊14C4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1364C2^3 | 128,609 |
(C22×C4).1365C23 = (C2×C4)⋊9Q16 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1365C2^3 | 128,610 |
(C22×C4).1366C23 = (C2×C4)⋊9D8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1366C2^3 | 128,611 |
(C22×C4).1367C23 = (C2×SD16)⋊15C4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1367C2^3 | 128,612 |
(C22×C4).1368C23 = C24.135D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1368C2^3 | 128,624 |
(C22×C4).1369C23 = C23.23D8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1369C2^3 | 128,625 |
(C22×C4).1370C23 = C24.75D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1370C2^3 | 128,626 |
(C22×C4).1371C23 = C24.76D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1371C2^3 | 128,627 |
(C22×C4).1372C23 = (C2×C4)≀C2 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 16 | | (C2^2xC4).1372C2^3 | 128,628 |
(C22×C4).1373C23 = C42⋊7D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1373C2^3 | 128,629 |
(C22×C4).1374C23 = C2.D8⋊4C4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1374C2^3 | 128,650 |
(C22×C4).1375C23 = C4.Q8⋊9C4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1375C2^3 | 128,651 |
(C22×C4).1376C23 = C4.Q8⋊10C4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1376C2^3 | 128,652 |
(C22×C4).1377C23 = C2.D8⋊5C4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1377C2^3 | 128,653 |
(C22×C4).1378C23 = M4(2).3Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1378C2^3 | 128,654 |
(C22×C4).1379C23 = D4⋊C4⋊C4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1379C2^3 | 128,657 |
(C22×C4).1380C23 = C4.67(C4×D4) | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1380C2^3 | 128,658 |
(C22×C4).1381C23 = C4.68(C4×D4) | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1381C2^3 | 128,659 |
(C22×C4).1382C23 = C2.(C4×Q16) | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1382C2^3 | 128,660 |
(C22×C4).1383C23 = M4(2).24D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1383C2^3 | 128,661 |
(C22×C4).1384C23 = C2.(C8⋊8D4) | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1384C2^3 | 128,665 |
(C22×C4).1385C23 = C2.(C8⋊7D4) | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1385C2^3 | 128,666 |
(C22×C4).1386C23 = C2.(C8⋊D4) | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1386C2^3 | 128,667 |
(C22×C4).1387C23 = C2.(C8⋊2D4) | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1387C2^3 | 128,668 |
(C22×C4).1388C23 = C42.428D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1388C2^3 | 128,669 |
(C22×C4).1389C23 = C42.107D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1389C2^3 | 128,670 |
(C22×C4).1390C23 = C8⋊7(C4⋊C4) | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1390C2^3 | 128,673 |
(C22×C4).1391C23 = C8⋊5(C4⋊C4) | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1391C2^3 | 128,674 |
(C22×C4).1392C23 = C4.(C4×Q8) | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1392C2^3 | 128,675 |
(C22×C4).1393C23 = C8⋊(C4⋊C4) | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1393C2^3 | 128,676 |
(C22×C4).1394C23 = C42.62Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1394C2^3 | 128,677 |
(C22×C4).1395C23 = C42.28Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1395C2^3 | 128,678 |
(C22×C4).1396C23 = C42.29Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1396C2^3 | 128,679 |
(C22×C4).1397C23 = C42.30Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1397C2^3 | 128,680 |
(C22×C4).1398C23 = C42.31Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1398C2^3 | 128,681 |
(C22×C4).1399C23 = C42.430D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1399C2^3 | 128,682 |
(C22×C4).1400C23 = C42.431D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1400C2^3 | 128,688 |
(C22×C4).1401C23 = C42.432D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1401C2^3 | 128,689 |
(C22×C4).1402C23 = C42.433D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1402C2^3 | 128,690 |
(C22×C4).1403C23 = C42.110D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1403C2^3 | 128,691 |
(C22×C4).1404C23 = C42.111D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1404C2^3 | 128,692 |
(C22×C4).1405C23 = C42.112D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1405C2^3 | 128,693 |
(C22×C4).1406C23 = C43⋊C2 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1406C2^3 | 128,694 |
(C22×C4).1407C23 = C42⋊8D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1407C2^3 | 128,695 |
(C22×C4).1408C23 = (C2×C4)⋊9SD16 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1408C2^3 | 128,700 |
(C22×C4).1409C23 = (C2×C4)⋊6Q16 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1409C2^3 | 128,701 |
(C22×C4).1410C23 = (C2×C4)⋊6D8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1410C2^3 | 128,702 |
(C22×C4).1411C23 = (C2×Q16)⋊10C4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1411C2^3 | 128,703 |
(C22×C4).1412C23 = (C2×D8)⋊10C4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1412C2^3 | 128,704 |
(C22×C4).1413C23 = C8⋊(C22⋊C4) | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1413C2^3 | 128,705 |
(C22×C4).1414C23 = C42.326D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1414C2^3 | 128,706 |
(C22×C4).1415C23 = C42.116D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1415C2^3 | 128,707 |
(C22×C4).1416C23 = M4(2)⋊13D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1416C2^3 | 128,712 |
(C22×C4).1417C23 = C42.117D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1417C2^3 | 128,713 |
(C22×C4).1418C23 = C42.118D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1418C2^3 | 128,714 |
(C22×C4).1419C23 = C42.119D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1419C2^3 | 128,715 |
(C22×C4).1420C23 = M4(2)⋊7Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1420C2^3 | 128,718 |
(C22×C4).1421C23 = C42.121D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1421C2^3 | 128,719 |
(C22×C4).1422C23 = C42.122D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1422C2^3 | 128,720 |
(C22×C4).1423C23 = C42.123D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1423C2^3 | 128,721 |
(C22×C4).1424C23 = C42.436D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1424C2^3 | 128,722 |
(C22×C4).1425C23 = C42.437D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1425C2^3 | 128,723 |
(C22×C4).1426C23 = C42.124D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1426C2^3 | 128,724 |
(C22×C4).1427C23 = C42.125D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1427C2^3 | 128,725 |
(C22×C4).1428C23 = C42⋊16Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1428C2^3 | 128,726 |
(C22×C4).1429C23 = C42⋊Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1429C2^3 | 128,727 |
(C22×C4).1430C23 = C23⋊2D8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1430C2^3 | 128,731 |
(C22×C4).1431C23 = C23⋊3SD16 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1431C2^3 | 128,732 |
(C22×C4).1432C23 = C23⋊2Q16 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1432C2^3 | 128,733 |
(C22×C4).1433C23 = (C2×C4)⋊2D8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1433C2^3 | 128,743 |
(C22×C4).1434C23 = (C22×D8).C2 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1434C2^3 | 128,744 |
(C22×C4).1435C23 = (C2×C4)⋊3SD16 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1435C2^3 | 128,745 |
(C22×C4).1436C23 = (C2×C8)⋊20D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1436C2^3 | 128,746 |
(C22×C4).1437C23 = (C2×C8).41D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1437C2^3 | 128,747 |
(C22×C4).1438C23 = (C2×C4)⋊2Q16 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1438C2^3 | 128,748 |
(C22×C4).1439C23 = (C2×D4)⋊Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1439C2^3 | 128,755 |
(C22×C4).1440C23 = (C2×Q8)⋊Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1440C2^3 | 128,756 |
(C22×C4).1441C23 = C4⋊C4.84D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1441C2^3 | 128,757 |
(C22×C4).1442C23 = C4⋊C4.85D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1442C2^3 | 128,758 |
(C22×C4).1443C23 = C24.83D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1443C2^3 | 128,765 |
(C22×C4).1444C23 = C24.84D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1444C2^3 | 128,766 |
(C22×C4).1445C23 = C24.85D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1445C2^3 | 128,767 |
(C22×C4).1446C23 = C24.86D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1446C2^3 | 128,768 |
(C22×C4).1447C23 = C4⋊C4⋊7D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1447C2^3 | 128,773 |
(C22×C4).1448C23 = C4⋊C4.94D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1448C2^3 | 128,774 |
(C22×C4).1449C23 = C4⋊C4.95D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1449C2^3 | 128,775 |
(C22×C4).1450C23 = (C2×C4)⋊3D8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1450C2^3 | 128,786 |
(C22×C4).1451C23 = (C2×C4)⋊5SD16 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1451C2^3 | 128,787 |
(C22×C4).1452C23 = (C2×C4)⋊3Q16 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1452C2^3 | 128,788 |
(C22×C4).1453C23 = C4⋊C4⋊Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1453C2^3 | 128,789 |
(C22×C4).1454C23 = (C2×C8)⋊Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1454C2^3 | 128,790 |
(C22×C4).1455C23 = C2.(C8⋊Q8) | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1455C2^3 | 128,791 |
(C22×C4).1456C23 = C4⋊C4.106D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1456C2^3 | 128,797 |
(C22×C4).1457C23 = (C2×Q8).8Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1457C2^3 | 128,798 |
(C22×C4).1458C23 = (C2×C4).23D8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1458C2^3 | 128,799 |
(C22×C4).1459C23 = (C2×C8).52D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1459C2^3 | 128,800 |
(C22×C4).1460C23 = (C2×C4).24D8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1460C2^3 | 128,803 |
(C22×C4).1461C23 = (C2×C4).19Q16 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1461C2^3 | 128,804 |
(C22×C4).1462C23 = C42⋊8C4⋊C2 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1462C2^3 | 128,805 |
(C22×C4).1463C23 = (C2×Q8).109D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1463C2^3 | 128,806 |
(C22×C4).1464C23 = C23.12D8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1464C2^3 | 128,807 |
(C22×C4).1465C23 = C24.88D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1465C2^3 | 128,808 |
(C22×C4).1466C23 = C24.89D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1466C2^3 | 128,809 |
(C22×C4).1467C23 = (C2×C8).1Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1467C2^3 | 128,815 |
(C22×C4).1468C23 = C2.(C8⋊3Q8) | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1468C2^3 | 128,816 |
(C22×C4).1469C23 = (C2×C8).24Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1469C2^3 | 128,817 |
(C22×C4).1470C23 = (C2×C4).26D8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1470C2^3 | 128,818 |
(C22×C4).1471C23 = (C2×C4).21Q16 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1471C2^3 | 128,819 |
(C22×C4).1472C23 = C4.(C4⋊Q8) | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1472C2^3 | 128,820 |
(C22×C4).1473C23 = (C2×C8).168D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1473C2^3 | 128,824 |
(C22×C4).1474C23 = (C2×C4).27D8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1474C2^3 | 128,825 |
(C22×C4).1475C23 = (C2×C8).169D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1475C2^3 | 128,826 |
(C22×C4).1476C23 = (C2×C8).60D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1476C2^3 | 128,827 |
(C22×C4).1477C23 = (C2×C8).170D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1477C2^3 | 128,828 |
(C22×C4).1478C23 = (C2×C8).171D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1478C2^3 | 128,829 |
(C22×C4).1479C23 = (C2×C4).28D8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1479C2^3 | 128,831 |
(C22×C4).1480C23 = (C2×C4).23Q16 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1480C2^3 | 128,832 |
(C22×C4).1481C23 = C4⋊C4.Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1481C2^3 | 128,833 |
(C22×C4).1482C23 = C23.390C24 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1482C2^3 | 128,1222 |
(C22×C4).1483C23 = C23.400C24 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1483C2^3 | 128,1232 |
(C22×C4).1484C23 = C23.401C24 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1484C2^3 | 128,1233 |
(C22×C4).1485C23 = C23.412C24 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1485C2^3 | 128,1244 |
(C22×C4).1486C23 = C42⋊47D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1486C2^3 | 128,1588 |
(C22×C4).1487C23 = C43⋊15C2 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1487C2^3 | 128,1599 |
(C22×C4).1488C23 = M4(2)○2M4(2) | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1488C2^3 | 128,1605 |
(C22×C4).1489C23 = C4×C8○D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1489C2^3 | 128,1606 |
(C22×C4).1490C23 = D4.5C42 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1490C2^3 | 128,1607 |
(C22×C4).1491C23 = C2×C24.4C4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1491C2^3 | 128,1609 |
(C22×C4).1492C23 = C2×(C22×C8)⋊C2 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1492C2^3 | 128,1610 |
(C22×C4).1493C23 = C24.73(C2×C4) | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1493C2^3 | 128,1611 |
(C22×C4).1494C23 = D4○(C22⋊C8) | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1494C2^3 | 128,1612 |
(C22×C4).1495C23 = C22×D4⋊C4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1495C2^3 | 128,1622 |
(C22×C4).1496C23 = C22×Q8⋊C4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1496C2^3 | 128,1623 |
(C22×C4).1497C23 = C2×C23.24D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1497C2^3 | 128,1624 |
(C22×C4).1498C23 = C22×C4≀C2 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1498C2^3 | 128,1631 |
(C22×C4).1499C23 = C2×C42⋊C22 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1499C2^3 | 128,1632 |
(C22×C4).1500C23 = C2×C4⋊M4(2) | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1500C2^3 | 128,1635 |
(C22×C4).1501C23 = C2×C42.6C22 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1501C2^3 | 128,1636 |
(C22×C4).1502C23 = C42.257C23 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1502C2^3 | 128,1637 |
(C22×C4).1503C23 = C42.674C23 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1503C2^3 | 128,1638 |
(C22×C4).1504C23 = C22×C4.Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1504C2^3 | 128,1639 |
(C22×C4).1505C23 = C22×C2.D8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1505C2^3 | 128,1640 |
(C22×C4).1506C23 = C2×C23.25D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1506C2^3 | 128,1641 |
(C22×C4).1507C23 = C22×C8.C4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1507C2^3 | 128,1646 |
(C22×C4).1508C23 = C2×M4(2).C4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1508C2^3 | 128,1647 |
(C22×C4).1509C23 = C2×C4×D8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1509C2^3 | 128,1668 |
(C22×C4).1510C23 = C2×C4×SD16 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1510C2^3 | 128,1669 |
(C22×C4).1511C23 = C2×C4×Q16 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1511C2^3 | 128,1670 |
(C22×C4).1512C23 = C4×C4○D8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1512C2^3 | 128,1671 |
(C22×C4).1513C23 = C2×SD16⋊C4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1513C2^3 | 128,1672 |
(C22×C4).1514C23 = C2×Q16⋊C4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1514C2^3 | 128,1673 |
(C22×C4).1515C23 = C2×D8⋊C4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1515C2^3 | 128,1674 |
(C22×C4).1516C23 = C42.383D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1516C2^3 | 128,1675 |
(C22×C4).1517C23 = C2×C8○D8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1517C2^3 | 128,1685 |
(C22×C4).1518C23 = C2×C8.26D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1518C2^3 | 128,1686 |
(C22×C4).1519C23 = C42.286C23 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1519C2^3 | 128,1692 |
(C22×C4).1520C23 = C42.287C23 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1520C2^3 | 128,1693 |
(C22×C4).1521C23 = M4(2)⋊9Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1521C2^3 | 128,1694 |
(C22×C4).1522C23 = Q8×M4(2) | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1522C2^3 | 128,1695 |
(C22×C4).1523C23 = C2×C4⋊D8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1523C2^3 | 128,1761 |
(C22×C4).1524C23 = C2×D4.D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1524C2^3 | 128,1762 |
(C22×C4).1525C23 = C2×D4.2D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1525C2^3 | 128,1763 |
(C22×C4).1526C23 = C2×C4⋊SD16 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1526C2^3 | 128,1764 |
(C22×C4).1527C23 = C2×C4⋊2Q16 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1527C2^3 | 128,1765 |
(C22×C4).1528C23 = C2×Q8.D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1528C2^3 | 128,1766 |
(C22×C4).1529C23 = C42.443D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1529C2^3 | 128,1767 |
(C22×C4).1530C23 = C2×C8⋊8D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1530C2^3 | 128,1779 |
(C22×C4).1531C23 = C2×C8⋊7D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1531C2^3 | 128,1780 |
(C22×C4).1532C23 = C2×C8.18D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1532C2^3 | 128,1781 |
(C22×C4).1533C23 = C24.144D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1533C2^3 | 128,1782 |
(C22×C4).1534C23 = C2×C8⋊D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1534C2^3 | 128,1783 |
(C22×C4).1535C23 = C2×C8⋊2D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1535C2^3 | 128,1784 |
(C22×C4).1536C23 = C2×C8.D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1536C2^3 | 128,1785 |
(C22×C4).1537C23 = C24.110D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1537C2^3 | 128,1786 |
(C22×C4).1538C23 = C2×D4⋊Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1538C2^3 | 128,1802 |
(C22×C4).1539C23 = C2×D4⋊2Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1539C2^3 | 128,1803 |
(C22×C4).1540C23 = C2×D4.Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1540C2^3 | 128,1804 |
(C22×C4).1541C23 = C2×Q8⋊Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1541C2^3 | 128,1805 |
(C22×C4).1542C23 = C2×C4.Q16 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1542C2^3 | 128,1806 |
(C22×C4).1543C23 = C2×Q8.Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1543C2^3 | 128,1807 |
(C22×C4).1544C23 = C42.447D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1544C2^3 | 128,1808 |
(C22×C4).1545C23 = C2×C23.19D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1545C2^3 | 128,1819 |
(C22×C4).1546C23 = C2×C23.20D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1546C2^3 | 128,1820 |
(C22×C4).1547C23 = C24.115D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).1547C2^3 | 128,1823 |
(C22×C4).1548C23 = C2×C4.4D8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1548C2^3 | 128,1860 |
(C22×C4).1549C23 = C2×C4.SD16 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1549C2^3 | 128,1861 |
(C22×C4).1550C23 = C2×C42.78C22 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1550C2^3 | 128,1862 |
(C22×C4).1551C23 = C42.355D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1551C2^3 | 128,1863 |
(C22×C4).1552C23 = C2×C42.28C22 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1552C2^3 | 128,1864 |
(C22×C4).1553C23 = C2×C42.29C22 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1553C2^3 | 128,1865 |
(C22×C4).1554C23 = C2×C42.30C22 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1554C2^3 | 128,1866 |
(C22×C4).1555C23 = C42.239D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1555C2^3 | 128,1867 |
(C22×C4).1556C23 = C2×C8⋊5D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1556C2^3 | 128,1875 |
(C22×C4).1557C23 = C2×C8⋊4D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1557C2^3 | 128,1876 |
(C22×C4).1558C23 = C2×C4⋊Q16 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1558C2^3 | 128,1877 |
(C22×C4).1559C23 = C2×C8.12D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1559C2^3 | 128,1878 |
(C22×C4).1560C23 = C42.360D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1560C2^3 | 128,1879 |
(C22×C4).1561C23 = C2×C8⋊3D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1561C2^3 | 128,1880 |
(C22×C4).1562C23 = C2×C8.2D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1562C2^3 | 128,1881 |
(C22×C4).1563C23 = C42.247D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1563C2^3 | 128,1882 |
(C22×C4).1564C23 = C2×C8⋊3Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1564C2^3 | 128,1889 |
(C22×C4).1565C23 = C2×C8.5Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1565C2^3 | 128,1890 |
(C22×C4).1566C23 = C2×C8⋊2Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1566C2^3 | 128,1891 |
(C22×C4).1567C23 = C42.364D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1567C2^3 | 128,1892 |
(C22×C4).1568C23 = C2×C8⋊Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1568C2^3 | 128,1893 |
(C22×C4).1569C23 = C42.252D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1569C2^3 | 128,1894 |
(C22×C4).1570C23 = C42.365D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1570C2^3 | 128,1899 |
(C22×C4).1571C23 = C42.308D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1571C2^3 | 128,1900 |
(C22×C4).1572C23 = C42.366D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1572C2^3 | 128,1901 |
(C22×C4).1573C23 = C42.367D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1573C2^3 | 128,1902 |
(C22×C4).1574C23 = C42.257D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1574C2^3 | 128,1912 |
(C22×C4).1575C23 = C42.258D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1575C2^3 | 128,1913 |
(C22×C4).1576C23 = C42.293D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1576C2^3 | 128,1977 |
(C22×C4).1577C23 = C42.294D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1577C2^3 | 128,1978 |
(C22×C4).1578C23 = C42.295D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1578C2^3 | 128,1979 |
(C22×C4).1579C23 = C42.296D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1579C2^3 | 128,1980 |
(C22×C4).1580C23 = C42.297D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1580C2^3 | 128,1981 |
(C22×C4).1581C23 = C42.298D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1581C2^3 | 128,1982 |
(C22×C4).1582C23 = Q8×C22×C4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1582C2^3 | 128,2155 |
(C22×C4).1583C23 = C22×C4⋊1D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1583C2^3 | 128,2172 |
(C22×C4).1584C23 = C22×C4⋊Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1584C2^3 | 128,2173 |
(C22×C4).1585C23 = C2×C23.38C23 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1585C2^3 | 128,2179 |
(C22×C4).1586C23 = C2×C23.41C23 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1586C2^3 | 128,2189 |
(C22×C4).1587C23 = C2×Q82 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1587C2^3 | 128,2209 |
(C22×C4).1588C23 = C22×C8○D4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1588C2^3 | 128,2303 |
(C22×C4).1589C23 = C23×D8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1589C2^3 | 128,2306 |
(C22×C4).1590C23 = C23×SD16 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1590C2^3 | 128,2307 |
(C22×C4).1591C23 = C23×Q16 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1591C2^3 | 128,2308 |
(C22×C4).1592C23 = C22×C4○D8 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1592C2^3 | 128,2309 |
(C22×C4).1593C23 = Q8×C24 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).1593C2^3 | 128,2321 |
(C22×C4).1594C23 = C22×2- 1+4 | φ: C23/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).1594C2^3 | 128,2324 |
(C22×C4).1595C23 = C4×C8⋊C4 | central extension (φ=1) | 128 | | (C2^2xC4).1595C2^3 | 128,457 |
(C22×C4).1596C23 = C2.C43 | central extension (φ=1) | 128 | | (C2^2xC4).1596C2^3 | 128,458 |
(C22×C4).1597C23 = C2×C22.7C42 | central extension (φ=1) | 128 | | (C2^2xC4).1597C2^3 | 128,459 |
(C22×C4).1598C23 = C23.28C42 | central extension (φ=1) | 64 | | (C2^2xC4).1598C2^3 | 128,460 |
(C22×C4).1599C23 = C23.29C42 | central extension (φ=1) | 64 | | (C2^2xC4).1599C2^3 | 128,461 |
(C22×C4).1600C23 = C42⋊4C8 | central extension (φ=1) | 128 | | (C2^2xC4).1600C2^3 | 128,476 |
(C22×C4).1601C23 = C43.C2 | central extension (φ=1) | 128 | | (C2^2xC4).1601C2^3 | 128,477 |
(C22×C4).1602C23 = (C4×C8)⋊12C4 | central extension (φ=1) | 128 | | (C2^2xC4).1602C2^3 | 128,478 |
(C22×C4).1603C23 = C4×C22⋊C8 | central extension (φ=1) | 64 | | (C2^2xC4).1603C2^3 | 128,480 |
(C22×C4).1604C23 = C42.378D4 | central extension (φ=1) | 64 | | (C2^2xC4).1604C2^3 | 128,481 |
(C22×C4).1605C23 = C42.379D4 | central extension (φ=1) | 64 | | (C2^2xC4).1605C2^3 | 128,482 |
(C22×C4).1606C23 = C8×C22⋊C4 | central extension (φ=1) | 64 | | (C2^2xC4).1606C2^3 | 128,483 |
(C22×C4).1607C23 = C23.36C42 | central extension (φ=1) | 64 | | (C2^2xC4).1607C2^3 | 128,484 |
(C22×C4).1608C23 = C23.17C42 | central extension (φ=1) | 64 | | (C2^2xC4).1608C2^3 | 128,485 |
(C22×C4).1609C23 = C4×C4⋊C8 | central extension (φ=1) | 128 | | (C2^2xC4).1609C2^3 | 128,498 |
(C22×C4).1610C23 = C43.7C2 | central extension (φ=1) | 128 | | (C2^2xC4).1610C2^3 | 128,499 |
(C22×C4).1611C23 = C42.45Q8 | central extension (φ=1) | 128 | | (C2^2xC4).1611C2^3 | 128,500 |
(C22×C4).1612C23 = C8×C4⋊C4 | central extension (φ=1) | 128 | | (C2^2xC4).1612C2^3 | 128,501 |
(C22×C4).1613C23 = C4⋊C8⋊13C4 | central extension (φ=1) | 128 | | (C2^2xC4).1613C2^3 | 128,502 |
(C22×C4).1614C23 = C4⋊C8⋊14C4 | central extension (φ=1) | 128 | | (C2^2xC4).1614C2^3 | 128,503 |
(C22×C4).1615C23 = C24⋊3C8 | central extension (φ=1) | 32 | | (C2^2xC4).1615C2^3 | 128,511 |
(C22×C4).1616C23 = C24.51(C2×C4) | central extension (φ=1) | 64 | | (C2^2xC4).1616C2^3 | 128,512 |
(C22×C4).1617C23 = C42.425D4 | central extension (φ=1) | 64 | | (C2^2xC4).1617C2^3 | 128,529 |
(C22×C4).1618C23 = C42.95D4 | central extension (φ=1) | 64 | | (C2^2xC4).1618C2^3 | 128,530 |
(C22×C4).1619C23 = C23.32M4(2) | central extension (φ=1) | 64 | | (C2^2xC4).1619C2^3 | 128,549 |
(C22×C4).1620C23 = C24.53(C2×C4) | central extension (φ=1) | 64 | | (C2^2xC4).1620C2^3 | 128,550 |
(C22×C4).1621C23 = C42⋊8C8 | central extension (φ=1) | 128 | | (C2^2xC4).1621C2^3 | 128,563 |
(C22×C4).1622C23 = C42.23Q8 | central extension (φ=1) | 128 | | (C2^2xC4).1622C2^3 | 128,564 |
(C22×C4).1623C23 = C42⋊5C8 | central extension (φ=1) | 128 | | (C2^2xC4).1623C2^3 | 128,571 |
(C22×C4).1624C23 = C42⋊4C4.C2 | central extension (φ=1) | 128 | | (C2^2xC4).1624C2^3 | 128,572 |
(C22×C4).1625C23 = C42⋊9C8 | central extension (φ=1) | 128 | | (C2^2xC4).1625C2^3 | 128,574 |
(C22×C4).1626C23 = C42.25Q8 | central extension (φ=1) | 128 | | (C2^2xC4).1626C2^3 | 128,575 |
(C22×C4).1627C23 = C23.21M4(2) | central extension (φ=1) | 64 | | (C2^2xC4).1627C2^3 | 128,582 |
(C22×C4).1628C23 = (C2×C8).195D4 | central extension (φ=1) | 64 | | (C2^2xC4).1628C2^3 | 128,583 |
(C22×C4).1629C23 = C23.22M4(2) | central extension (φ=1) | 64 | | (C2^2xC4).1629C2^3 | 128,601 |
(C22×C4).1630C23 = C23⋊2M4(2) | central extension (φ=1) | 64 | | (C2^2xC4).1630C2^3 | 128,602 |
(C22×C4).1631C23 = C4⋊C4⋊3C8 | central extension (φ=1) | 128 | | (C2^2xC4).1631C2^3 | 128,648 |
(C22×C4).1632C23 = (C2×C8).Q8 | central extension (φ=1) | 128 | | (C2^2xC4).1632C2^3 | 128,649 |
(C22×C4).1633C23 = C22⋊C4⋊4C8 | central extension (φ=1) | 64 | | (C2^2xC4).1633C2^3 | 128,655 |
(C22×C4).1634C23 = C23.9M4(2) | central extension (φ=1) | 64 | | (C2^2xC4).1634C2^3 | 128,656 |
(C22×C4).1635C23 = C42.61Q8 | central extension (φ=1) | 128 | | (C2^2xC4).1635C2^3 | 128,671 |
(C22×C4).1636C23 = C42.27Q8 | central extension (φ=1) | 128 | | (C2^2xC4).1636C2^3 | 128,672 |
(C22×C4).1637C23 = C42.325D4 | central extension (φ=1) | 64 | | (C2^2xC4).1637C2^3 | 128,686 |
(C22×C4).1638C23 = C42.109D4 | central extension (φ=1) | 64 | | (C2^2xC4).1638C2^3 | 128,687 |
(C22×C4).1639C23 = C42.327D4 | central extension (φ=1) | 128 | | (C2^2xC4).1639C2^3 | 128,716 |
(C22×C4).1640C23 = C42.120D4 | central extension (φ=1) | 128 | | (C2^2xC4).1640C2^3 | 128,717 |
(C22×C4).1641C23 = C2×C4×C22⋊C4 | central extension (φ=1) | 64 | | (C2^2xC4).1641C2^3 | 128,1000 |
(C22×C4).1642C23 = C2×C4×C4⋊C4 | central extension (φ=1) | 128 | | (C2^2xC4).1642C2^3 | 128,1001 |
(C22×C4).1643C23 = C4×C42⋊C2 | central extension (φ=1) | 64 | | (C2^2xC4).1643C2^3 | 128,1002 |
(C22×C4).1644C23 = D4×C42 | central extension (φ=1) | 64 | | (C2^2xC4).1644C2^3 | 128,1003 |
(C22×C4).1645C23 = Q8×C42 | central extension (φ=1) | 128 | | (C2^2xC4).1645C2^3 | 128,1004 |
(C22×C4).1646C23 = C22×C8⋊C4 | central extension (φ=1) | 128 | | (C2^2xC4).1646C2^3 | 128,1602 |
(C22×C4).1647C23 = C2×C4×M4(2) | central extension (φ=1) | 64 | | (C2^2xC4).1647C2^3 | 128,1603 |
(C22×C4).1648C23 = C2×C8○2M4(2) | central extension (φ=1) | 64 | | (C2^2xC4).1648C2^3 | 128,1604 |
(C22×C4).1649C23 = C22×C4⋊C8 | central extension (φ=1) | 128 | | (C2^2xC4).1649C2^3 | 128,1634 |
(C22×C4).1650C23 = Q8×C2×C8 | central extension (φ=1) | 128 | | (C2^2xC4).1650C2^3 | 128,1690 |
(C22×C4).1651C23 = C2×C8⋊4Q8 | central extension (φ=1) | 128 | | (C2^2xC4).1651C2^3 | 128,1691 |
(C22×C4).1652C23 = C23×M4(2) | central extension (φ=1) | 64 | | (C2^2xC4).1652C2^3 | 128,2302 |